



---

## PAARDEVLEI SOLAR PHOTO-VOLTAIC FARM GEOTECHNICAL INVESTIGATION

FEBRUARY 2024  
REVISION 00

**FINAL REPORT**



Prepared by:

**JG AFRIKA (PTY) LTD**

Cape Town



Project director: J.C. Norris

|                          |            |
|--------------------------|------------|
| <b>VERIFICATION PAGE</b> | Form 4.3.1 |
|                          | Rev 13     |

|                                                                                                                                                                                                                                                                         |                                                                  |                           |                                                                                       |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------|-------------|
| <b>TITLE:</b><br>PAARDEVLEI SOLAR PHOTO-VOLTAIC FARM GEOTECHNICAL INVESTIGATION                                                                                                                                                                                         |                                                                  |                           |                                                                                       |             |
| <b>JGA REF. NO.</b><br>6047                                                                                                                                                                                                                                             | <b>DATE:</b><br>08/02/2024                                       |                           |                                                                                       |             |
| <b>CARRIED OUT BY:</b><br><b>JG AFRIKA (PTY) LTD</b><br><b>CAPE TOWN</b><br>                                                                                                           |                                                                  |                           |                                                                                       |             |
| <b>COMMISSIONED BY:</b><br><b>INTEGRATION ENVIRONMENT &amp; ENERGY</b><br><b>GRAEFENBERG</b><br>                                                                                      |                                                                  |                           |                                                                                       |             |
| <b>AUTHOR</b><br>T Hlongwane                                                                                                                                                                                                                                            | <b>CLIENT CONTACT PERSON</b><br>M Imran                          |                           |                                                                                       |             |
| <b>SYNOPSIS</b><br>Geotechnical Investigation to establish the geological and geotechnical conditions for the proposed Paardevlei Solar PV Farm.                                                                                                                        |                                                                  |                           |                                                                                       |             |
| <b>KEY WORDS:</b><br>Geology, bearing pressure, calcrete, residual shale, shale bedrock, thermal resistivity, DPSH, founding conditions, piled foundation.                                                                                                              |                                                                  |                           |                                                                                       |             |
| © COPYRIGHT: JG Afrika (Pty) Ltd.                                                                                                                                                                                                                                       |                                                                  |                           |                                                                                       |             |
| <b>QUALITY VERIFICATION</b><br>This report has been prepared under the controls established by a quality management system that meets the requirements of ISO9001: 2015 which has been independently certified by DEKRA Certification under certificate number 90906882 |                                                                  |                           |                                                                                       |             |
|                                                                                                                                                                                    |                                                                  |                           |                                                                                       |             |
| <b>Verification</b>                                                                                                                                                                                                                                                     | <b>Capacity</b>                                                  | <b>Name</b>               | <b>Signature</b>                                                                      | <b>Date</b> |
| Author                                                                                                                                                                                                                                                                  | Engineering Geologist                                            | T Hlongwane<br>Pr.Sci.Nat |   | 08/02/2024  |
| Checked by:                                                                                                                                                                                                                                                             | Associate Geotechnical                                           | K Singh<br>Pr.Sci.Nat     |  | 08/02/2024  |
| Authorised by:                                                                                                                                                                                                                                                          | Director Geotechnical                                            | Jan Norris<br>Pr.Eng.     |   | 08/02/2024  |
| <b>Filename:</b>                                                                                                                                                                                                                                                        | 6047 - Paardevlei Solar PV Farm - Final Geotechnical Report.docx |                           |                                                                                       |             |

# PAARDEVLEI SOLAR PHOTO-VOLTAIC FARM

## GEOTECHNICAL INVESTIGATION

### FINAL REPORT

#### TABLE OF CONTENTS

|           |                                                                  |           |
|-----------|------------------------------------------------------------------|-----------|
| <b>1</b>  | <b>INTRODUCTION.....</b>                                         | <b>1</b>  |
| <b>2</b>  | <b>TERMS OF REFERENCE.....</b>                                   | <b>1</b>  |
| 2.1       | Scope of works .....                                             | 2         |
| 2.2       | Disclaimer .....                                                 | 2         |
| <b>3</b>  | <b>SITE DESCRIPTION .....</b>                                    | <b>2</b>  |
| 3.1       | Locality.....                                                    | 2         |
| 3.2       | Topography and Land Use .....                                    | 3         |
| 3.3       | Climate.....                                                     | 3         |
| 3.4       | Vegetation .....                                                 | 4         |
| <b>4</b>  | <b>GEOLOGY .....</b>                                             | <b>4</b>  |
| 4.1       | Seismicity .....                                                 | 4         |
| <b>5</b>  | <b>HYDROGEOLOGY.....</b>                                         | <b>5</b>  |
| <b>6</b>  | <b>FIELDWORK.....</b>                                            | <b>5</b>  |
| 6.1       | Trial Pits .....                                                 | 5         |
| 6.2       | Dynamic Probe Light (DPL) Testing .....                          | 5         |
| 6.3       | Dynamic Probe Super Heavy (DPSH) Testing .....                   | 5         |
| <b>7</b>  | <b>ENGINEERING GEOLOGY AND TERRAIN EVALUATION .....</b>          | <b>6</b>  |
| 7.1       | Subsoil Profile .....                                            | 7         |
| 7.2       | Subsoil Consistencies.....                                       | 9         |
| <b>8</b>  | <b>ELECTRICAL RESISTIVITY SURVEY (ERS) AND HYDROCENSUS .....</b> | <b>15</b> |
| 8.1       | Resistivity Survey Methodology .....                             | 15        |
| 8.2       | Resistivity Results .....                                        | 16        |
| <b>9</b>  | <b>LABORATORY TEST RESULTS.....</b>                              | <b>19</b> |
| 9.1       | Grading Index and Moisture-Density Relationship .....            | 22        |
| 9.2       | Falling Head Permeability.....                                   | 23        |
| 9.3       | Chemical Test – Basson Index .....                               | 23        |
| 9.4       | Thermal Dissipation Capacity .....                               | 24        |
| 9.5       | Remoulded Drained Shear Box .....                                | 25        |
| 9.6       | Standard Consolidation .....                                     | 26        |
| <b>10</b> | <b>GEOTECHNICAL APPRAISAL .....</b>                              | <b>27</b> |

|                                                       |           |
|-------------------------------------------------------|-----------|
| 10.1 PV Plant Site - Allowable Bearing Pressures..... | 27        |
| 10.2 Ground Stability.....                            | 27        |
| 10.3 Excavation Conditions .....                      | 27        |
| 10.4 Cut and Fill Slopes .....                        | 28        |
| 10.5 Groundwater and Drainage.....                    | 29        |
| 10.6 Erosion Control.....                             | 29        |
| <b>11 FOUNDATION RECOMMENDATIONS.....</b>             | <b>29</b> |
| 11.1 Solar PV Modules .....                           | 29        |
| 11.2 Driven Piles .....                               | 29        |
| 11.3 Bored Piles.....                                 | 29        |
| 11.4 Panel Foundations .....                          | 30        |
| 11.5 Loading .....                                    | 30        |
| <b>12 CONCLUSION.....</b>                             | <b>31</b> |
| <b>13 REFERENCES.....</b>                             | <b>33</b> |

## TABLES

|                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------|----|
| Table 3-1: Summary of Climatic Conditions, Somerset West (information extracted from “Climate-Data.org” ).....  | 3  |
| Table 7-1: Summary of DPL Test Results Indicating EASBP Values .....                                            | 9  |
| Table 7-2: Summary of DPSH Test Results Indicating EASBP Values and Equivalent Uncorrected SPT “N” Values ..... | 11 |
| Table 8-1: Summary Results of Inversion Modelling .....                                                         | 17 |
| Table 8-2: Summary Layer Statistics .....                                                                       | 18 |
| Table 8-3: Literature Based Resistivity Values for Certain Geological Media .....                               | 19 |
| Table 9-1: Summary of Foundation Indicator Test Results – Paardevlei Solar PV Farm .....                        | 20 |
| Table 9-2: Summary of Moisture Density Test Results – Paardevlei Solar PV Farm.....                             | 21 |
| Table 9-3: Plasticity Index Range of Soil (Burmaster, 1949) .....                                               | 22 |
| Table 9-4: Falling Head Permeability Test Results .....                                                         | 23 |
| Table 9-5: Guidelines for Assessing Overall Aggressiveness (N <sub>c</sub> ).....                               | 23 |
| Table 9-6: Summary of Selected Determinants from Chemical Testing .....                                         | 23 |
| Table 9-7: Summary of Thermal Resistivity Results .....                                                         | 24 |
| Table 9-8: Remoulded Drained Shear Box Test Results .....                                                       | 26 |
| Table 9-9: Summary of Standard Consolidation Test Results .....                                                 | 27 |
| Table 10-1: Summary of Excavation Conditions (COTO, 2020).....                                                  | 28 |

## FIGURES

|                                                                                                                                                     |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1-1: Proposed Paardevlei Solar PV Farm.....                                                                                                  | 1  |
| Figure 4-1: Micro-climate region of South Africa (TRH 14, 1996 adapted from<br>Weinert, 1980) .....                                                 | 4  |
| Figure 6-1: DPSH rig setup (left) and DPSH testing at Paardevlei Solar PV Farm site<br>(right).....                                                 | 6  |
| Figure 7-1: General overview of the site showing typical vegetation cover on the<br>south-west portion of the site .....                            | 6  |
| Figure 7-2: General overview of the showing typical vegetation cover on the north<br>portion of the site.....                                       | 7  |
| Figure 7-3: Residual shale excavation spoil material (left) and aeolian excavation<br>spoil material (right) .....                                  | 8  |
| Figure 7-4: Hardpan calcrete (left) and weathered shale bedrock spoil material<br>(right).....                                                      | 8  |
| Figure 8-1: Site Plan Showing Field Test Positions .....                                                                                            | 15 |
| Figure 9-1: Residual shale excavation spoil adjacent to trial pit TP7 (left) and<br>residual shale excavation spoil adjacent to trial pit TP25..... | 26 |

## APPENDICES

|                                           |
|-------------------------------------------|
| Appendix A: Figures                       |
| Appendix B: Trial Pits                    |
| Appendix C: DPL Tests                     |
| Appendix D: DPSH Tests                    |
| Appendix E: Laboratory Test Results       |
| Appendix F: Electrical Resistivity Report |

# PAARDEVLEI SOLAR PHOTO-VOLTAIC FARM

## GEOTECHNICAL INVESTIGATION

### FINAL REPORT

#### 1 INTRODUCTION

This final geotechnical report presents the findings of a shallow geotechnical investigation undertaken by JG Afrika (Pty) Ltd, for the proposed photo-voltaic (PV) plant for the Paardevlei Solar PV Farm in Somerset West near Cape Town in the Western Cape Province. The project developers, Integration Environment & Energy, have identified 3No. land parcels, which are approximately 34 Ha (south-west), 38 Ha (north-west), and 80 Ha (east) in extent and forms part of this investigation. It is understood that the project developers have not yet finalised the position of the new substation, and hence the substation site was not investigated under this current assessment.



Figure 1-1: Proposed Paardevlei Solar PV Farm

#### 2 TERMS OF REFERENCE

The appointment to proceed with the investigation is based upon JG Afrika's quotation referenced 5938-1053b entitled "Quotation to undertake a geotechnical investigation for the Paardevlei Solar PV project in Somerset West in the Western Cape Province," dated 31<sup>st</sup> August 2023. Integration Environment & Energy appointed JG Afrika via a signed service agreement letter, entitled "Framework Contract for Short Term Assignment" dated the 12<sup>th</sup> of April 2023.

## 2.1 Scope of works

The investigation seeks to give a general geotechnical evaluation of the proposed study site. The objectives of the geotechnical investigation were to assess the founding conditions for the proposed photovoltaic structures, ease of excavation, materials utilisation, electrical resistivity of the subsurface, earthworks requirements and overall site stability.

The methodology proposed in the quotation, made provision for the following scope of work:

- A total of twenty-nine (29No.) trial pits were mechanically excavated with a tractor-loader-backhoe (TLB) and profiled.
- A total of twenty-nine (29No.) Dynamic Probe Light (DPL) tests were conducted adjacent to the trial pit positions.
- One trial pit and DPL test could not be conducted at the location of TP6 and DPL6 due to the presence of possible buried subsurface explosive residuals.
- Fifteen (15No.) Dynamic Probe Super Heavy (DPSH) tests were conducted across the development site.
- Disturbed samples were taken from different subsurface horizons for laboratory analysis. The tests included Atterberg Limit determinations, sieve analysis, hydrometer, compaction/density testing, chemical testing, remoulded shear box testing, thermal resistivity testing, and corrosivity testing;
- Comments are made on the depth to bedrock and excavation conditions of the subsurface material.
- Recommendations on the proposed foundation option are provided.

## 2.2 Disclaimer

The interpretation of the overall geotechnical conditions across the site was based on observations and point information acquired from the respective investigation positions. Subsurface geotechnical conditions intermediate to these have been inferred by extrapolation, interpolation, and professional judgement. Consequently, whilst considered unlikely, there is a possibility of actual conditions encountered during construction being at variance to those inferred and for this reason it is recommended that the services of an engineering geologist or geotechnical engineer be retained on an *ad-hoc* basis during construction. The information and interpretations are given as a guideline only. There is no guarantee that the information given is totally representative of the entire area in every respect and no responsibility will be accepted for consequences arising out of the fact that actual conditions vary from those inferred.

## 3 SITE DESCRIPTION

### 3.1 Locality

The proposed Paardevlei Solar PV Farm is situated approximately 3 km south-east of Somerset Mall in the town of Somerset West in the Western Cape Province. Access to the site is via Ou Paardevlei Road, which is located north-east of the site. A Locality Plan indicating the site location is presented in Figure 1, **Appendix A**.

### 3.2 Topography and Land Use

The terrain across the site undulates from south-west to the north-east. The highest elevation on site is approximately 20 meters above mean sea level (mamsl) in the north-east. According to the 1:50 000 scaled Topographical Map Series (3418 BB) of Somerset West, there are no water bodies that traverse through the site. The Eerste Rivier is approximately 1.50 km west of the site and the wetland Paardevlei is approximately 1.00 km south-west of the site. A Site Plan is presented in Figure 2, **Appendix A**.

### 3.3 Climate

The study area is characterized by a warm-summer Mediterranean climate with a “**Csb**” classification according to the Köppen-Geiger climate classification. Somerset West receives a mean annual precipitation of 787 mm. The lowest average rainfall is received in February (20 mm) and the highest in June (141 mm), which is a seasonal variation of 121 mm.

The maximum midday temperatures for Somerset West ranges from 16.0°C in July to 26.4°C in February. The minimum temperatures for Somerset West ranges from 8.0°C in July to 17°C in February. Table 3-1 below, summarizes the climatic conditions.

The month with the highest daily hours of sunshine is December with an average of 10.8 hours of sunshine daily. The month with the lowest daily hours of sunshine is June, with an average of 6.2 hours of sunshine daily.

*Table 3-1: Summary of Climatic Conditions, Somerset West (information extracted from “Climate-Data.org”)*

| Months         | Average Rainfall (mm) | Temperature (°C) |             |             | Average Daylight (Hours/day) |
|----------------|-----------------------|------------------|-------------|-------------|------------------------------|
|                |                       | Maximum          | Minimum     | Average     |                              |
| January        | 23                    | 26.1             | 16.7        | 21.1        | 3                            |
| February       | 20                    | 26.4             | 17.0        | 21.3        | 3                            |
| March          | 23                    | 24.9             | 15.9        | 19.9        | 3                            |
| April          | 64                    | 22.3             | 13.6        | 17.5        | 5                            |
| May            | 95                    | 19.1             | 11.3        | 14.8        | 7                            |
| June           | 141                   | 16.4             | 8.8         | 12.4        | 8                            |
| July           | 127                   | 16.0             | 8.0         | 11.7        | 8                            |
| August         | 107                   | 16.1             | 8.3         | 12.0        | 8                            |
| September      | 70                    | 17.6             | 9.4         | 13.3        | 7                            |
| October        | 47                    | 20.3             | 11.6        | 15.7        | 5                            |
| November       | 43                    | 22.2             | 13.2        | 17.4        | 4                            |
| December       | 27                    | 24.6             | 15.5        | 19.8        | 4                            |
| <b>Average</b> | <b>-</b>              | <b>21.0</b>      | <b>12.4</b> | <b>16.4</b> | <b>5.4</b>                   |

### 3.4 Vegetation

Scattered trees and shrubs are the predominant type of vegetative cover across the site. The regional biome within which the study site is located is classed as a “Fynbos Biome”.

## 4 GEOLOGY

According to the 1:250 000 scaled Geological Map Series (No.3318) of Cape Town, the study area is underlain by unconsolidated soils of Springfontyn Formation and Witzand Formation. The Springfontyn Formation is represented by brackish calcareous soil (**Qb**). The Witzand Formation is represented by partly calcified dune sand with calcrete lenses (**Qw**) and light grey to pale red coloured sandy soil (**Qg**).

During the investigation, non-engineered fill, colluvium, aeolian, residual shale horizon, calcrete and shale bedrock conditions were intersected. During a review of the relevant maps and field investigation, no structural lineaments in the form of faults were identified. A Geological Map illustrating the geology of the site is presented as Figure 3, **Appendix A**.

The study area is characterised by a climatic N-value that ranges from 2 to 5, implying that chemical decomposition and mechanical disintegration will occur.

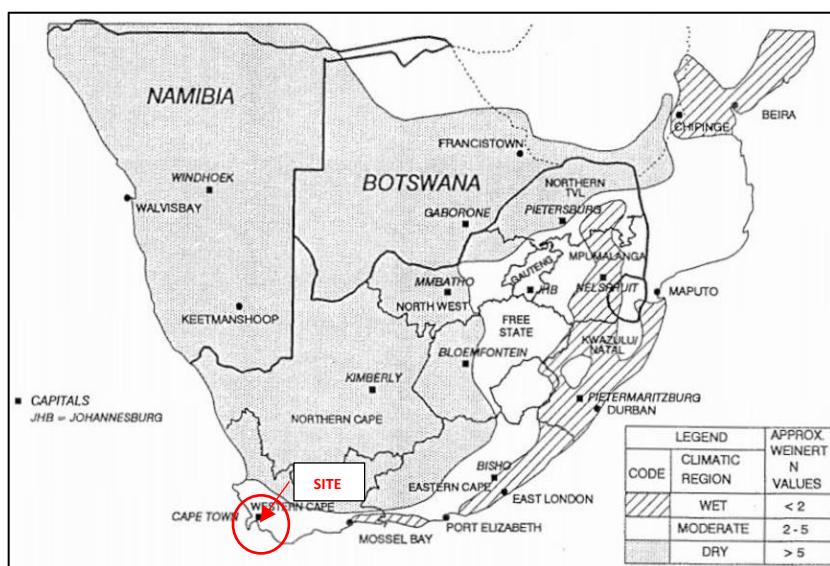



Figure 4-1: Micro-climate region of South Africa (TRH 14, 1996 adapted from Weinert, 1980)

### 4.1 Seismicity

According to the 1:6 000 000 Seismic Intensity Map of Southern Africa, the site falls within a level 7 (VII) area on the Modified Mercalli Scale (MMS). Peak horizontal ground acceleration values of greater than  $200 \text{ cm/s}^2$  have been recorded, with a 10% probability of this being exceeded in a 50 year period. This implies that there is a 10% probability of an earthquake occurring within a 50 year period, with maximum horizontal ground acceleration values greater than  $200 \text{ cm/s}^2$ . According to the 1:6 000 000 Seismic Hazard Map of Southern Africa, a maximum ground acceleration (A) value of  $0.0293g$  may be anticipated at the epicentre of the earthquake.

A Seismic Map indicating the location of site is presented as Figure 5 which is included in **Appendix A**.

## 5 HYDROGEOLOGY

According to the 1: 500 000 Hydrogeological Map (3126) of Cape Town, the study area is classed as an intergranular system (**a3**). This implies that the mechanism of groundwater recharge is via percolation through joints and fractures into the underlying bedrock. Median borehole yields range from 0.5 l/s to 2.0 l/s. A Hydrogeological Map indicating the location of the site is presented as Figure 4 which is included in **Appendix A**.

## 6 FIELDWORK

The fieldwork for this investigation was carried out over the period from the 04<sup>th</sup> of December to the 06<sup>th</sup> of December 2023. Trial pits were profiled and their locations recorded using a hand-held Garmin etrex GPS unit. All trial pits were back-filled in such a way as to minimize environmental damage, using the first-out last-in philosophy. Signage board indicating the presence of possible buried subsurface explosive residuals was encountered in the north-western portion of the site in vicinity of trial pit TP6. The location of the trial pits is indicated on Figure 2, **Appendix A**.

### 6.1 Trial Pits

A total of twenty-nine (29No.) trial pits, referenced TP1 to TP29, were mechanically excavated using a Tractor Loader Backhoe (TLB) to depths ranging from 0.50 to 3.00 m below Natural Ground Level (NGL). The subsoils were profiled by a suitably experienced and qualified Engineering Geologist according to the Guidelines for Soil and Rock Logging in South Africa (2002). The full trial pit profile descriptions are presented in **Appendix B**.

### 6.2 Dynamic Probe Light (DPL) Testing

A total of twenty-nine (29No.) DPL tests, referenced DPL1 to DPL29, were advanced to refusal depths ranging from 0.30 m to 2.10 m below NGL. The DPL tests were conducted adjacent to the trial pits (TP1 to TP29) in order to determine the subsoil consistency. DPL test results were used to empirically derive the Estimated Allowable Safe Bearing Pressures (EASBP) for the soils, according to the methods of Terzaghi & Peck, modified by Meyerhof (Craig, 1997). The results of the DPL testing are presented in **Appendix C**.

### 6.3 Dynamic Probe Super Heavy (DPSH) Testing

A total of fifteen (15No.) DPSH tests, referenced DPSH1 to DPSH15, were advanced to refusal depths ranging from 1.20 m to 7.60 m below NGL. DPSH testing is generally used to provide consistency of the subsoil and to empirically correlate DPSH 'N' values into SPT 'N' values. DPSH probing is a dynamic test whereby a 63.5 kg hammer is repetitively dropped over a distance of 760 mm onto an anvil driving a string of rods, at the end of which is attached a 50.5 mm diameter cone with an apex angle of 60°.



Figure 6-1: DPSH rig setup (left) and DPSH testing at Paardevlei Solar PV Farm site (right)

## 7 ENGINEERING GEOLOGY AND TERRAIN EVALUATION

A summary of the subsoils encountered across the study area is discussed below in terms of lithologies, consistency, and material properties:



Figure 7-1: General overview of the site showing typical vegetation cover on the south-west portion of the site



*Figure 7-2: General overview of the showing typical vegetation cover on the north portion of the site*

## 7.1 Subsoil Profile

- **Non-Engineered Fill Horizon**

A non-engineered fill horizon was intersected in trial pits TP2 and TP17 over a depth range of 0.00 to 1.90 m below NGL. The non-engineered fill horizon was profiled as abundant (>50%), sub-angular, sandstone pebble sized fragments, loosely compacted in a silt matrix with moist, brown, dense, clayey sandy silt with gravel sized fragments and builder's rubble.

- **Colluvium Horizon**

A colluvium horizon was intersected in all the excavated trial pits. The colluvium horizon was generally profiled as dry to moist, brown to reddish brown, loose to dense, fine grained sandy silt to gravelly silt. The colluvium horizon was generally intersected over a depth range of 0.00 to 2.00 m below NGL. The colluvium horizon was intersected in twenty-five trial pits, with the exception of TP2, TP9, TP12, and TP17.

- **Aeolian Horizon**

An aeolian horizon was intersected in trial pit TP9, TP11, TP12, TP19, and TP29. The aeolian horizon was intersected over a depth range of 0.00 to 2.70 m below NGL. The aeolian horizon was profiled as very moist to wet, white to light grey speckled light yellowish orange, loose to medium dense, clayey sand to silty medium grained sand.

- **Residual Shale Horizon**

A residual shale horizon was intersected in trial pit TP3 to TP8, TP20 to TP22, TP24 to TP26, TP28 to TP30. The residual shale was intersected over a depth range of 0.20 to 3.00 m below NGL. The residual shale was profiled as a moist to very moist, greyish green to light grey speckled light orange, intact, soft to firm, sandy clay.



*Figure 7-3: Residual shale excavation spoil material (left) and aeolian excavation spoil material (right)*

- **Hardpan Calcrete**

Hardpan calcrete conditions were only intersected in trial pit TP10, TP13 to TP16, and TP18. The hardpan calcrete was intersected over a depth range of 0.20 to 2.80 m below NGL. The hardpan calcrete was profiled as white, moderately weathered, fine to medium grained, moderately fractured, soft to medium rock strength.

- **Shale Bedrock**

Shale bedrock conditions were only intersected in trial pit TP1 to TP8, and TP20 to TP22, over a depth range of 0.30 to 2.30 m below NGL. The shale bedrock was profiled as greyish blue to olive brown, slightly to moderately weathered, fine grained, planar laminated, highly fractured, soft to medium rock strength.



*Figure 7-4: Hardpan calcrete (left) and weathered shale bedrock spoil material (right)*

An Engineering Geological Map indicating trial pit excavation conditions, DPL and DPSH refusal depths and the geological conditions on site is presented in Figure 8, **Appendix A**.

## 7.2 Subsoil Consistencies

### 7.2.1 DPL Results

Table 7-1 overleaf summarizes the results of the DPL testing, with the full set of DPL results presented in **Appendix C**.

Table 7-1: Summary of DPL Test Results Indicating EASBP Values

| DPL No.       | Depth (m)                                                                                         |         |         |         |         |         |         |         |
|---------------|---------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
|               | 0.3                                                                                               | 0.6     | 0.9     | 1.2     | 1.5     | 1.8     | 2.1     | 2.4     |
| EASBP's (kPa) |                                                                                                   |         |         |         |         |         |         |         |
| DPL1          | 143                                                                                               | 227     | Refusal |         |         |         |         |         |
| DPL2          | 67                                                                                                | Refusal |         |         |         |         |         |         |
| DPL3          | 147                                                                                               | Refusal |         |         |         |         |         |         |
| DPL4          | 213                                                                                               | 260     | Refusal |         |         |         |         |         |
| DPL5          | 147                                                                                               | 204     | Refusal |         |         |         |         |         |
| DPL6          | No DPL test was carried out due to the presence of possible buried subsurface explosive residuals |         |         |         |         |         |         |         |
| DPL7          | 175                                                                                               | 241     | 274     | Refusal |         |         |         |         |
| DPL8          | 153                                                                                               | 213     | 270     | Refusal |         |         |         |         |
| DPL9          | 213                                                                                               | 241     | 296     | Refusal |         |         |         |         |
| DPL10         | 213                                                                                               | 265     | Refusal |         |         |         |         |         |
| DPL11         | 119                                                                                               | 251     | 289     | Refusal |         |         |         |         |
| DPL12         | 110                                                                                               | 100     | 157     | 138     | 147     | 194     | 213     | Refusal |
| DPL13         | 53                                                                                                | 67      | 86      | 147     | Refusal |         |         |         |
| DPL14         | 86                                                                                                | Refusal |         |         |         |         |         |         |
| DPL15         | 67                                                                                                | 62      | 62      | 86      | 119     | Refusal |         |         |
| DPL16         | 72                                                                                                | 110     | 119     | 147     | 204     | 223     | Refusal |         |
| DPL17         | 86                                                                                                | Refusal |         |         |         |         |         |         |
| DPL18         | 204                                                                                               | Refusal |         |         |         |         |         |         |
| DPL19         | 241                                                                                               | 298     | 270     | Refusal |         |         |         |         |
| DPL20         | 204                                                                                               | 265     | 355     | Refusal |         |         |         |         |

| DPL No.       | Depth (m) |         |         |     |     |         |     |     |
|---------------|-----------|---------|---------|-----|-----|---------|-----|-----|
|               | 0.3       | 0.6     | 0.9     | 1.2 | 1.5 | 1.8     | 2.1 | 2.4 |
| EASBP's (kPa) |           |         |         |     |     |         |     |     |
| DPL21         | 138       | 194     | 185     | 213 | 237 | Refusal |     |     |
| DPL22         | 175       | 232     | Refusal |     |     |         |     |     |
| DPL23         | 133       | Refusal |         |     |     |         |     |     |
| DPL24         | 91        | Refusal |         |     |     |         |     |     |
| DPL25         | 171       | 206     | Refusal |     |     |         |     |     |
| DPL26         | 185       | 218     | Refusal |     |     |         |     |     |
| DPL27         | 296       | 289     | Refusal |     |     |         |     |     |
| DPL28         | 223       | 204     | Refusal |     |     |         |     |     |
| DPL29         | 204       | 213     | Refusal |     |     |         |     |     |
| DPL30         | 190       | 227     | 194     | 204 | 223 | Refusal |     |     |

## 7.2.2 DPL Test Results

The subsoils generally displayed uncorrected SPT “N” values ranging from 3 to 27 over a depth range of 0.00 m to 2.10 m below NGL. DPL refusal was encountered in all the DPL positions in the non-engineered fill horizon, aeolian horizon, residual shale horizon, hardpan calcrete and shale bedrock condition over a depth range of 0.30 m to 2.40 m below NGL.

## 7.2.3 DPSH Test Results

Table 7-2 below summarizes the results of the DPSH testing, with the full set of DPSH results presented in **Appendix D**.

*Table 7-2: Summary of DPSH Test Results Indicating EASBP Values and Equivalent Uncorrected SPT “N” Values*

| DPSH No. | Depth (m) | Equivalent Uncorrected SPT “N” Value | EASBP (kPa) |
|----------|-----------|--------------------------------------|-------------|
| DPSH1    | 0.0-0.30  | 10                                   | 144         |
|          | 0.30-0.60 | 27                                   | 355         |
|          | 0.60-0.90 | 31                                   | 404         |
|          | 0.90-1.20 | 36                                   | 465         |
|          | 1.20-1.50 | DPSH Refusal                         |             |
|          | 1.80-2.10 | DPSH Refusal                         |             |
| DPSH2    | 0.0-0.30  | 15                                   | 205         |
|          | 0.30-0.60 | 27                                   | 352         |
|          | 0.60-0.90 | 30                                   | 397         |
|          | 0.90-1.20 | 28                                   | 364         |
|          | 1.20-1.50 | 30                                   | 394         |
|          | 1.50-1.80 | 32                                   | 415         |
|          | 1.80-2.10 | DPSH Refusal                         |             |
| DPSH3    | 0.0-0.30  | 12                                   | 163         |
|          | 0.30-0.60 | 13                                   | 181         |
|          | 0.60-0.90 | 15                                   | 205         |
|          | 0.90-1.20 | 31                                   | 410         |
|          | 1.20-1.50 | 32                                   | 417         |
|          | 1.50-1.80 | DPSH Refusal                         |             |
|          | 1.80-2.10 | DPSH Refusal                         |             |
| DPSH4    | 0.0-0.30  | 10                                   | 144         |
|          | 0.30-0.60 | 13                                   | 181         |
|          | 0.60-0.90 | 7                                    | 112         |
|          | 0.90-1.20 | 16                                   | 220         |
|          | 1.20-1.50 | 32                                   | 422         |
|          | 1.50-1.80 | DPSH Refusal                         |             |
| DPSH5    | 0.0-0.30  | 8                                    | 123         |
|          | 0.30-0.60 | 14                                   | 197         |
|          | 0.60-0.90 | 18                                   | 240         |
|          | 0.90-1.20 | 20                                   | 264         |
|          | 1.20-1.50 | 31                                   | 408         |
|          | 1.50-1.80 | 37                                   | 475         |
|          | 1.80-2.10 | DPSH Refusal                         |             |
| DPSH6    | 0.0-0.30  | 9                                    | 134         |
|          | 0.30-0.60 | 6                                    | 89          |
|          | 0.60-0.90 | 8                                    | 123         |

| DPSH No. | Depth (m) | Equivalent Uncorrected SPT "N" Value | EASBP (kPa) |
|----------|-----------|--------------------------------------|-------------|
| DPSH7    | 0.90-1.20 | 16                                   | 220         |
|          | 1.20-1.50 | 11                                   | 154         |
|          | 1.50-1.80 | 5                                    | 76          |
|          | 1.80-2.10 | 7                                    | 101         |
|          | 2.10-2.40 | 7                                    | 112         |
|          | 2.40-2.70 | 14                                   | 197         |
|          | 2.70-3.00 | 25                                   | 330         |
|          | 3.00-3.30 | DPSH Refusal                         |             |
|          | 0.0-0.30  | 14                                   | 189         |
|          | 0.30-0.60 | 16                                   | 212         |
|          | 0.60-0.90 | 18                                   | 240         |
|          | 0.90-1.20 | 16                                   | 212         |
|          | 1.20-1.50 | 16                                   | 212         |
|          | 1.50-1.80 | 9                                    | 134         |
| DPSH8    | 1.80-2.10 | 12                                   | 172         |
|          | 2.10-2.40 | 8                                    | 123         |
|          | 2.40-2.70 | 12                                   | 172         |
|          | 2.70-3.00 | 13                                   | 181         |
|          | 3.00-3.30 | 18                                   | 246         |
|          | 3.30-3.60 | 21                                   | 275         |
|          | 3.60-3.90 | 20                                   | 264         |
|          | 3.90-4.20 | 14                                   | 197         |
|          | 4.20-4.50 | 20                                   | 270         |
|          | 4.50-4.80 | 19                                   | 258         |
|          | 4.80-5.10 | 18                                   | 246         |
|          | 5.10-5.40 | DPSH Refusal                         |             |
|          | 0.0-0.30  | 8                                    | 123         |
|          | 0.30-0.60 | 3                                    | 63          |
| DPSH9    | 0.60-0.90 | 10                                   | 144         |
|          | 0.90-1.20 | 26                                   | 348         |
|          | 1.20-1.50 | 21                                   | 281         |
|          | 1.50-1.80 | 22                                   | 291         |
|          | 1.80-2.10 | 17                                   | 233         |
|          | 2.10-2.40 | 17                                   | 233         |
|          | 2.40-2.70 | 22                                   | 296         |
|          | 2.70-3.00 | 23                                   | 309         |
|          | 3.00-3.30 | 22                                   | 296         |
|          | 3.30-3.60 | 21                                   | 286         |
|          | 3.60-3.90 | 17                                   | 233         |
|          | 3.90-4.20 | 19                                   | 258         |
|          | 4.20-4.50 | 16                                   | 212         |
|          | 4.50-4.80 | 16                                   | 220         |
|          | 4.80-5.10 | 11                                   | 154         |
|          | 5.10-5.40 | 5                                    | 76          |
|          | 5.40-5.70 | 11                                   | 154         |
|          | 5.70-6.00 | 12                                   | 163         |
|          | 6.00-6.30 | 14                                   | 189         |
|          | 6.30-6.60 | 20                                   | 270         |
|          | 6.60-6.90 | 20                                   | 270         |
|          | 6.90-7.20 | 31                                   | 410         |
|          | 7.20-7.50 | 26                                   | 338         |

| DPSH No. | Depth (m) | Equivalent Uncorrected SPT "N" Value | EASBP (kPa) |
|----------|-----------|--------------------------------------|-------------|
|          | 7.50-7.80 | DPSH Refusal                         |             |
| DPSH9    | 0.0-0.30  | 3                                    | 63          |
|          | 0.30-0.60 | 3                                    | 63          |
|          | 0.60-0.90 | 7                                    | 101         |
|          | 0.90-1.20 | 6                                    | 89          |
|          | 1.20-1.50 | 3                                    | 63          |
|          | 1.50-1.80 | 6                                    | 89          |
|          | 1.80-2.10 | 7                                    | 101         |
|          | 2.10-2.40 | 14                                   | 197         |
|          | 2.40-2.70 | 16                                   | 212         |
|          | 2.70-3.00 | 15                                   | 205         |
|          | 3.00-3.30 | 19                                   | 258         |
|          | 3.30-3.60 | 18                                   | 246         |
|          | 3.60-3.90 | 18                                   | 246         |
|          | 3.90-4.20 | 13                                   | 181         |
|          | 4.20-4.50 | 7                                    | 101         |
|          | 4.50-4.80 | 8                                    | 123         |
|          | 4.80-5.10 | 16                                   | 220         |
|          | 5.10-5.40 | DPSH Refusal                         |             |
| DPSH10   | 0.0-0.30  | 7                                    | 112         |
|          | 0.30-0.60 | 3                                    | 63          |
|          | 0.60-0.90 | 3                                    | 63          |
|          | 0.90-1.20 | 7                                    | 112         |
|          | 1.20-1.50 | 16                                   | 212         |
|          | 1.50-1.80 | 27                                   | 358         |
|          | 1.80-2.10 | 12                                   | 163         |
|          | 2.10-2.40 | 7                                    | 112         |
|          | 2.40-2.70 | 7                                    | 112         |
|          | 2.70-3.00 | 7                                    | 101         |
|          | 3.00-3.30 | 18                                   | 240         |
|          | 3.30-3.60 | 25                                   | 330         |
|          | 3.60-3.90 | 18                                   | 246         |
|          | 3.90-4.20 | 18                                   | 240         |
|          | 4.20-4.50 | 23                                   | 300         |
|          | 4.50-4.80 | 32                                   | 422         |
|          | 4.80-5.10 | 31                                   | 404         |
|          | 5.10-5.40 | DPSH Refusal                         |             |
| DPSH11   | 0.0-0.30  | 19                                   | 253         |
|          | 0.30-0.60 | 13                                   | 181         |
|          | 0.60-0.90 | 10                                   | 144         |
|          | 0.90-1.20 | 12                                   | 163         |
|          | 1.20-1.50 | 12                                   | 172         |
|          | 1.50-1.80 | 15                                   | 205         |
|          | 1.80-2.10 | 16                                   | 220         |
|          | 2.10-2.40 | 7                                    | 112         |
|          | 2.40-2.70 | 13                                   | 181         |
|          | 2.70-3.00 | 26                                   | 348         |
|          | 3.00-3.30 | DPSH Refusal                         |             |
|          | 0.0-0.30  | 12                                   | 172         |
| DPSH12   | 0.30-0.60 | 3                                    | 63          |
|          | 0.60-0.90 | 5                                    | 76          |
|          | 0.90-1.20 | 7                                    | 112         |

| DPSH No.  | Depth (m) | Equivalent Uncorrected SPT "N" Value | EASBP (kPa) |
|-----------|-----------|--------------------------------------|-------------|
| DPSH13    | 1.20-1.50 | 14                                   | 189         |
|           | 1.50-1.80 | 19                                   | 253         |
|           | 1.80-2.10 | 16                                   | 212         |
|           | 2.10-2.40 | 21                                   | 281         |
|           | 2.40-2.70 | 32                                   | 421         |
|           | 2.70-3.00 | DPSH Refusal                         |             |
|           | 0.0-0.30  | 15                                   | 205         |
|           | 0.30-0.60 | 8                                    | 123         |
|           | 0.60-0.90 | 11                                   | 154         |
|           | 0.90-1.20 | 24                                   | 314         |
|           | 1.20-1.50 | 25                                   | 330         |
| DPSH14    | 1.50-1.80 | 19                                   | 253         |
|           | 1.80-2.10 | 17                                   | 233         |
|           | 2.10-2.40 | 18                                   | 246         |
|           | 2.40-2.70 | 26                                   | 345         |
|           | 2.70-3.00 | 25                                   | 330         |
|           | 3.00-3.30 | DPSH Refusal                         |             |
|           | 0.0-0.30  | 5                                    | 76          |
|           | 0.30-0.60 | 18                                   | 246         |
|           | 0.60-0.90 | 13                                   | 181         |
|           | 0.90-1.20 | 15                                   | 205         |
|           | 1.20-1.50 | 9                                    | 134         |
|           | 1.50-1.80 | 6                                    | 89          |
|           | 1.80-2.10 | 6                                    | 89          |
|           | 2.10-2.40 | 14                                   | 189         |
|           | 2.40-2.70 | 13                                   | 181         |
| DPSH15    | 2.70-3.00 | 17                                   | 233         |
|           | 3.00-3.30 | 18                                   | 240         |
|           | 3.30-3.60 | 19                                   | 258         |
|           | 3.60-3.90 | 23                                   | 309         |
|           | 3.90-4.20 | 26                                   | 345         |
|           | 4.20-4.50 | 28                                   | 367         |
|           | 4.50-4.80 | 28                                   | 361         |
|           | 4.80-5.10 | 26                                   | 338         |
|           | 5.10-5.40 | DPSH Refusal                         |             |
|           | 0.0-0.30  | 9                                    | 134         |
|           | 0.30-0.60 | 9                                    | 134         |
|           | 0.60-0.90 | 12                                   | 163         |
|           | 0.90-1.20 | 14                                   | 189         |
| DPSH16    | 1.20-1.50 | 12                                   | 163         |
|           | 1.50-1.80 | 17                                   | 233         |
|           | 1.80-2.10 | 17                                   | 233         |
|           | 2.10-2.40 | 13                                   | 181         |
|           | 2.40-2.70 | 10                                   | 144         |
|           | 2.70-3.00 | 12                                   | 163         |
|           | 3.00-3.30 | 14                                   | 189         |
|           | 3.30-3.60 | 17                                   | 233         |
|           | 3.60-3.90 | 17                                   | 233         |
|           | 3.90-4.20 | 33                                   | 432         |
| 4.20-4.50 |           | DPSH Refusal                         |             |

The subsoils generally displayed uncorrected SPT “N” values ranging from 7 to 32 over a depth range of 2.10 m to 3.00 m below NGL. An average uncorrected SPT “N” value of 15 can be anticipated over a depth range of 2.10 m to 3.00 m below NGL. DPSH refusal was encountered in all 15No. DPSH positions in the aeolian horizon, residual shale horizon, hardpan calcrete and shale bedrock conditions over a depth range of 1.70 m to 7.80 m below NGL.

## 8 ELECTRICAL RESISTIVITY SURVEY (ERS) AND HYDROCENSUS

This section presents the results of a resistivity survey carried out for the proposed Paardevlei Solar PV Farm in Somerset West in the Western Cape. The purpose of the assessment was to determine the in situ electrical resistivity of the subsoils through inversion modelling.

### 8.1 Resistivity Survey Methodology

The resistivity survey was carried out over the period from the 13<sup>th</sup> of December to the 15<sup>th</sup> of December 2023. A total of fifteen (15No.) sounding locations designated by the geotechnical trial pit numbering were carried out at the site. The approximate positions of field test locations are presented in Figure 8-1 below.

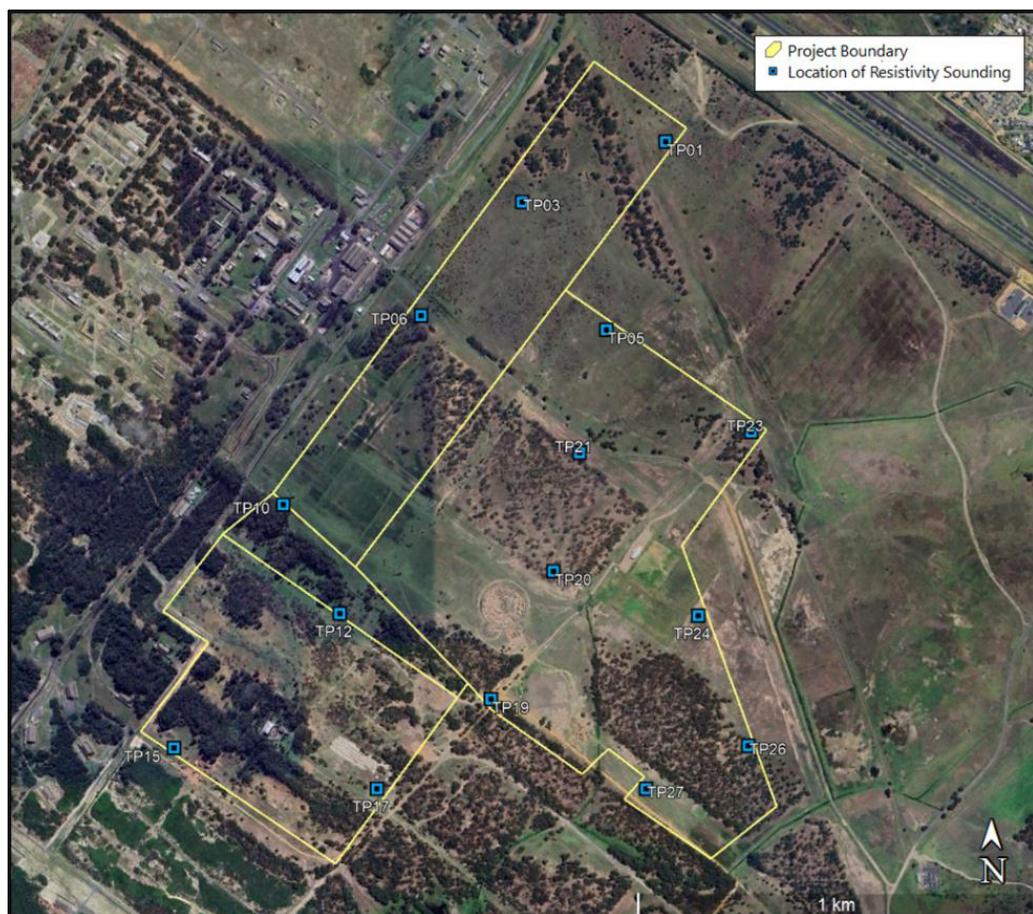



Figure 8-1: Site Plan Showing Field Test Positions

Soil resistivity testing was carried out in accordance with the Wenner array configuration, according to the practise recommended by the South African Council for Scientific and Industrial Research (CSIR) National Physical Laboratory. Electrical resistivity soundings were performed to establish the inferred soil resistivity to an inferred depth of 20 m.

The Wenner electrical resistivity array consisted of two current electrodes (A and B) and two potential electrodes (M and N) set out about the sounding position (O). The current electrodes were used to pass current and the potential electrodes used to measure the potential difference during a measurement cycle. The four electrodes were driven into the ground at specified distances from the central sounding point (O) and set out in a straight line. For a given measurement, the spacing between any two adjacent electrodes (A and M, M and N, and N and B) was kept equal and designated (a).

Apparent resistivity measurements were taken while increasing the electrode spacing (a), allowing for deeper sounding penetration. Apparent resistivity measurements were taken at electrode spacings of 1, 2, 3, 5, 7, 10, 15, and 20 metres, corresponding to the same depths of inferred penetration below ground level.

## 8.2 Resistivity Results

The results of the resistivity soundings were modelled using a computer inversion model (IPI2WIN) that interprets the apparent resistivity variations of the ground by fitting internally generated model data to the field data through an inversion process. The field measurements for resistivity testing are presented in **Appendix F**.

The results of inversion modelling of Wenner soundings were reviewed and inferred layers and electrical resistivity presented. The inferred corrosivity potential was assigned to each layer. The American Water Treatment Association (ASTM) suggests a stringent limit for soils with a resistivity up to 10  $\Omega\text{.m}$  as being potentially aggressive and severely corrosive. The following ASTM<sup>1</sup> **steel pipe corrosion classification** has been used:

| Resistivity ( $\Omega\text{.m}$ ) | Classification          |
|-----------------------------------|-------------------------|
| 0 - 10                            | very severely corrosive |
| 10 - 20                           | severely corrosive      |
| 20 - 50                           | moderately corrosive    |
| 50 - 100                          | mildly corrosive        |
| >100                              | very mildly corrosive   |

Inversion models presented in this report act as an illustrative mechanism and aid in interpretation of the subsoil conditions at each test location. The typical number of layers input into the models was three (3No.), with a maximum of four (4No.). It is possible that the interpretation of depths and resistivity values of deeper layers through inversion modelling may become inaccurate, as underlying or deeper sounding readings are absent. Modelling of the data will infer these layers to

<sup>1</sup> Report STP1013 of American Society for Testing Materials (ASTM), titled "Effects of Soil Characteristics on Corrosion", dated 1989, edited by Chalker and Palmer

continue to an infinite depth. It is also possible that variance of observed resistivity between sounding locations may occur. The inversion models are presented in **Appendix F**. The summary of inversion modelling is summarised in 8-1.

*Table 8-1: Summary Results of Inversion Modelling*

| Sounding | Latitude | Longitude | Layer | Depth of Layer Base (mbgl) | Inferred Layer Resistivity ( $\Omega \cdot \text{m}$ ) | Inferred Corrosivity    |
|----------|----------|-----------|-------|----------------------------|--------------------------------------------------------|-------------------------|
| TP01     | 34.06601 | 18.80041  | 1     | 0.50                       | 181                                                    | very mildly corrosive   |
|          |          |           | 2     | 0.55                       | 0.26                                                   | very severely corrosive |
|          |          |           | 3     | >                          | 1528                                                   | very mildly corrosive   |
| TP03     | 34.06737 | 18.79651  | 1     | 0.50                       | 409                                                    | very mildly corrosive   |
|          |          |           | 2     | 11.10                      | 27.8                                                   | moderately corrosive    |
|          |          |           | 3     | >                          | 29210                                                  | very mildly corrosive   |
| TP05     | 34.07025 | 18.79880  | 1     | 0.50                       | 7.09                                                   | very severely corrosive |
|          |          |           | 2     | 0.84                       | 9266                                                   | very mildly corrosive   |
|          |          |           | 3     | >                          | 2.04                                                   | very severely corrosive |
| TP06     | 34.06993 | 18.79376  | 1     | 0.57                       | 307.9                                                  | very mildly corrosive   |
|          |          |           | 2     | 5.19                       | 29.04                                                  | moderately corrosive    |
|          |          |           | 3     | >                          | 219.2                                                  | very mildly corrosive   |
| TP10     | 34.07419 | 18.79001  | 1     | 1.15                       | 29.9                                                   | moderately corrosive    |
|          |          |           | 2     | 2.22                       | 5.11                                                   | very severely corrosive |
|          |          |           | 3     | 4.17                       | 78                                                     | mildly corrosive        |
|          |          |           | 4     | >                          | 4.68                                                   | very severely corrosive |
| TP12     | 34.07664 | 18.79155  | 1     | 1.84                       | 30.7                                                   | moderately corrosive    |
|          |          |           | 2     | 9.39                       | 8.71                                                   | very severely corrosive |
|          |          |           | 3     | >                          | 6134                                                   | very mildly corrosive   |
| TP15     | 34.07967 | 18.78704  | 1     | 2.34                       | 829                                                    | very mildly corrosive   |
|          |          |           | 2     | 7.51                       | 15.5                                                   | severely corrosive      |
|          |          |           | 3     | >                          | 8047                                                   | very mildly corrosive   |
| TP17     | 34.08059 | 18.79256  | 1     | 1.45                       | 190                                                    | very mildly corrosive   |
|          |          |           | 2     | 3.01                       | 5.99                                                   | very severely corrosive |
|          |          |           | 3     | >                          | 23059                                                  | very mildly corrosive   |
| TP19     | 34.07857 | 18.79566  | 1     | 0.50                       | 179                                                    | very mildly corrosive   |
|          |          |           | 2     | 2.36                       | 11.6                                                   | severely corrosive      |
|          |          |           | 3     | 3.54                       | 0.98                                                   | very severely corrosive |
|          |          |           | 4     | >                          | 1762                                                   | very mildly corrosive   |
| TP20     | 34.07569 | 18.79736  | 1     | 0.70                       | 2.844                                                  | very severely corrosive |
|          |          |           | 2     | 1.71                       | 0.762                                                  | very severely corrosive |
|          |          |           | 3     | >                          | 40.69                                                  | moderately corrosive    |
| TP21     | 34.07302 | 18.79807  | 1     | 0.73                       | 31.63                                                  | moderately corrosive    |
|          |          |           | 2     | 3.90                       | 7.635                                                  | very severely corrosive |
|          |          |           | 3     | >                          | 53.09                                                  | mildly corrosive        |
| TP23     | 34.07255 | 18.80274  | 1     | 1.83                       | 10.5                                                   | severely corrosive      |
|          |          |           | 2     | 16.60                      | 21.2                                                   | moderately corrosive    |

| Sounding | Latitude | Longitude | Layer | Depth of Layer Base (mbgl) | Inferred Layer Resistivity (Ω.m) | Inferred Corrosivity    |
|----------|----------|-----------|-------|----------------------------|----------------------------------|-------------------------|
| TP24     | 34.07669 | 18.80130  | 3     | >                          | 913                              | very mildly corrosive   |
|          |          |           | 1     | 2.76                       | 1.64                             | very severely corrosive |
|          |          |           | 2     | 11.80                      | 7.07                             | very severely corrosive |
|          |          |           | 3     | >                          | 1292                             | very mildly corrosive   |
| TP26     | 34.07962 | 18.80266  | 1     | 2.90                       | 1.4                              | very severely corrosive |
|          |          |           | 2     | 10.70                      | 201                              | very mildly corrosive   |
|          |          |           | 3     | >                          | 807                              | very mildly corrosive   |
| TP27     | 34.08059 | 18.79988  | 1     | 0.50                       | 26.5                             | moderately corrosive    |
|          |          |           | 2     | 7.62                       | 5.42                             | very severely corrosive |
|          |          |           | 3     | 29.40                      | 602                              | very mildly corrosive   |
|          |          |           | 4     | >                          | 5149                             | very mildly corrosive   |

> indicates inferred depth of final layer modelled as infinite

The results of inversion modelling are variable across the site. Typically, the results do indicate that the surface layer of variable thickness is of low resistivity (average 149 Ω.m), which is underlain by a second layer of variable thickness of high resistivity (average 640 Ω.m). Both these layers are then underlain by a horizon of classified as very high resistivity (average 4800 Ω.m) modelled to infinite depth. A statistical review of the data is difficult given the influence of variable geology, topography, depth to groundwater, and inferred saline groundwater conditions across the site.

It is preferred that the soil resistivity results are considered in isolation, and low resistivity results with corresponding high conductivity should have suitable earthing mechanisms and corrosion protection placed in the designs. The summary of the minimum, maximum and average values of the modelled layers is presented in Table 8-2.

*Table 8-2: Summary Layer Statistics*

| Layer | Description       | Minimum | Maximum | Average |
|-------|-------------------|---------|---------|---------|
| 1     | Depth (m)         | 0.50    | 2.90    | 1.25    |
|       | Resistivity (Ω.m) | 1.40    | 829     | 149     |
| 2     | Depth (m)         | 0.55    | 16.6    | 6.30    |
|       | Resistivity (Ω.m) | 0.26    | 9266    | 640     |
| 3     | Resistivity (Ω.m) | 0.98    | 29210   | 4799    |

Resistivity, although a major factor, is not the only consideration when determining the corrosivity of a soil on a metal or concrete object. Other considerations include pH, redox potential, sulphide content, moisture content, and chloride content. The resistivity values should be regarded as a first indication of corrosive potential. It is further noted that the expected elevated EC in the groundwater will influence the model outputs.

Conductivity is the inverse of the resistivity and soils with a high resistivity value will have a corresponding low conductivity value. Resistivity therefore indicates the ability of the media to carry corrosive currents. There generally exists a linear relationship between corrosivity of steel and the conductance of the medium around it. It is therefore expected that a medium with a high resistivity

value will have a corresponding low corrosive nature. Aggressiveness of the subsoil profiles on concrete structures is partially related to the conductivity of the subsoils, and primarily to the chemical constituents present. Typical literature- based resistivity values for certain geological media are presented in Table 8-3.

*Table 8-3: Literature Based Resistivity Values for Certain Geological Media*

| Material                             | Resistivity ( $\Omega \cdot \text{m}$ ) |
|--------------------------------------|-----------------------------------------|
| <b>Igneous and Metamorphic Rocks</b> |                                         |
| Granite                              | $5 \times 10^3 - 10^6$                  |
| Basalt                               | $10^3 - 10^6$                           |
| Slate                                | $6 \times 10^2 - 4 \times 10^7$         |
| Marble                               | $10^2 - 2.5 \times 10^8$                |
| Quartzite                            | $10^2 - 2 \times 10^8$                  |
| <b>Sedimentary Rocks</b>             |                                         |
| Sandstone                            | $8 - 4 \times 10^3$                     |
| Shale                                | $20 - 2 \times 10^3$                    |
| Limestone                            | $50 - 4 \times 10^2$                    |
| <b>Soils and Waters</b>              |                                         |
| Clay                                 | $1 - 100$                               |
| Alluvium                             | $10 - 800$                              |
| Groundwater (fresh)                  | $10 - 100$                              |
| Sea water                            | 0.2                                     |

## 9 LABORATORY TEST RESULTS

In order to assess the engineering properties and the behavioural characteristics of the subsurface material encountered across the site, samples were retrieved and submitted to Steyn-Wilson Civil Engineering Testing Laboratories for testing. The following tests were carried out:

- 9No. Foundation Indicator (Grading, Hydrometer Analyses, and Atterberg Limits).
- 5No. Road Indicator (Grading analyses, and Atterberg Limits)
- 5No. Modified AASHTO density and California Bearing Ratio tests.
- 1No. Remoulded Shear Box.
- 1No. Standard consolidation.
- 1No. Falling Head Permeability.
- 5No. Thermal Resistivity.
- 6No. Basson Index: Corrosivity and Aggressivity.

Table 9-1: Summary of Foundation Indicator Test Results – Paardevlei Solar PV Farm

| TP No. | Depth (m)   | Description   | Lithology        | Particle Size Distribution (AASHTO) |      |      |      | Atterberg Limits (%) |      |     | MC (%) | Pot Exp (Van Der Merwe, 1964) |
|--------|-------------|---------------|------------------|-------------------------------------|------|------|------|----------------------|------|-----|--------|-------------------------------|
|        |             |               |                  | Gravel                              | Sand | Silt | Clay | LL                   | PI   | LS  |        |                               |
| TP7    | 0.30 – 1.70 | Gravelly sand | Residual Shale   | 25                                  | 41   | 14   | 20   | 31.4                 | 14.2 | 7.4 | 2.0    | Low                           |
| TP12   | 0.00 – 2.60 | Silty sand    | Colluvium        | 2                                   | 87   | 6    | 5    | 0                    | 0    | 0   | 3.5    | Low                           |
| TP16   | 0.50        | Silty sand    | Colluvium        | 2                                   | 88   | 9    | 1    | 0                    | 0    | 0   | 0.3    | Low                           |
| TP18   | 0.50        | Gravelly sand | Hardpan Calcrete | 9                                   | 79   | 8    | 4    | 0                    | 0    | 0   | 0.5    | Low                           |
| TP20   | 0.50        | Clayey sand   | Residual Shale   | 15                                  | 56   | 12   | 17   | 32                   | 16.2 | 7.9 | 3.0    | Low to Medium                 |
| TP26   | 1.20 – 2.90 | Silty sand    | Residual Shale   | 1                                   | 50   | 32   | 17   | 34.3                 | 16.9 | 8.3 | 2.8    | Medium                        |
| TP27   | 0.50        | Silty sand    | Colluvium        | 17                                  | 61   | 18   | 4    | 0                    | 0    | 0   | 4.6    | Low                           |
| TP29   | 1.70 – 2.20 | Silty sand    | Aeolian          | 2                                   | 92   | 4    | 2    | 0                    | 0    | 0   | 0.5    | Low                           |
| TP30   | 0.60 – 2.20 | Clayey sand   | Residual Shale   | 1                                   | 64   | 15   | 20   | 39.6                 | 17.6 | 7.7 | 1.6    | Medium                        |

| Key:                  |                                   |
|-----------------------|-----------------------------------|
| LL = liquid limit     | Pot Exp = potential expansiveness |
| LS = linear shrinkage | MC = moisture content             |
| PI = plasticity index | m = meter                         |

Table 9-2: Summary of Moisture Density Test Results – Paardevlei Solar PV Farm

| TP No. | Depth (m) | Description       | Lithology        | Particle Size Distribution (AASHTO) |      |             | Atterberg Limits (%) |     |      | GM   | MDD (kg/m <sup>3</sup> ) | OMC (%) | CBR Values       |    |    |    |     | Material Class (COTO, 2020) |  |
|--------|-----------|-------------------|------------------|-------------------------------------|------|-------------|----------------------|-----|------|------|--------------------------|---------|------------------|----|----|----|-----|-----------------------------|--|
|        |           |                   |                  | Gravel                              | Sand | Silt & Clay | LL                   | PI  | LS   |      |                          |         | Compaction MDD % |    |    |    |     |                             |  |
|        |           |                   |                  | 90                                  | 93   | 95          | 98                   | 100 |      |      |                          |         | 90               | 93 | 95 | 98 | 100 |                             |  |
| TP1    | 0.60-0.90 | Gravelly sand     | Shale Bedrock    | 40                                  | 57   | 3           | 0                    | 0   | 0    | 2.41 | 2173                     | 8.2     | 10               | 16 | 23 | 37 | 50  | <b>G6</b>                   |  |
| TP13   | 1.10-2.40 | Clayey silty sand | Hardpan Calcrete | 3                                   | 90   | 1           | 0                    | 0   | 0    | 1.14 | 1672                     | 12.4    | 8                | 12 | 16 | 23 | 29  | <b>G8</b>                   |  |
| TP15   | 0.00-2.60 | Clayey silty sand | Colluvium        | 1                                   | 86   | 13          | 0                    | 0   | 0    | 1.15 | 1854                     | 10.4    | 5                | 7  | 9  | 11 | 15  | <b>G9</b>                   |  |
| TP19   | 0.90-2.00 | Clayey silty sand | Aeolian          | 0                                   | 91   | 9           | 0                    | 0   | 0    | 1.28 | 1755                     | 12.3    | 8                | 10 | 12 | 15 | 17  | <b>G8</b>                   |  |
| TP24   | 0.90-3.00 | Sandy silty clay  | Residual Shale   | 1                                   | 40   | 59          | 49                   | 28  | 12.9 | 0.53 | 1846                     | 12.3    | 1                | 1  | 1  | 1  | 1   | <b>CBD</b>                  |  |

| Key:                          |                                            |
|-------------------------------|--------------------------------------------|
| GM = grading modulus          | Material Class = according to COLTO (2020) |
| LL = liquid limit             | m = meter                                  |
| LS = linear shrinkage         | CBR = California bearing ratio             |
| PI = plasticity index         | MDD = Maximum dry density                  |
| CBD = could not be determined | OMC = Optimum moisture content             |

Table 9-3: Plasticity Index Range of Soil (Burmester, 1949)

| Plasticity Index | Description          |
|------------------|----------------------|
| 0                | Non-Plastic          |
| 1 – 5            | Slightly Plastic     |
| 5 – 10           | Low Plasticity       |
| 10 – 20          | Medium Plasticity    |
| 20 – 40          | High Plasticity      |
| >40              | Very High Plasticity |

### 9.1 Grading Index and Moisture-Density Relationship

The colluvium horizon generally grades as having a major sand component with a minor silt component. According to the laboratory test results, a Plasticity Index (**PI**) value of 0 and a Linear Shrinkage (**LS**) value of 0.0% were attained. According to Burmester (1949), the sampled material displays “Non-Plastic” soil properties. According to Van der Merwe (1964), the colluvium material generally has low potential expansivity. A **CBR** strength value of 9 was attained at 95 % of Mod AASHTO compaction. According to COTO (2020) the material classifies as a **G9 quality material**. The material is not suitable for use in construction but can be utilised for general fills and landscaping.

The aeolian horizon generally grades as having a major sand component with a minor silt component. According to the laboratory test results, a **PI** value of 0 and a **LS** value of 0.0% were attained. According to Burmester (1949), the sampled material displays “Non-Plastic” soil properties. According to Van der Merwe (1964), the aeolian material generally has low potential expansivity. A **CBR** strength value of 12 was attained at 95 % of Mod AASHTO compaction. According to COTO (2020) the material classifies as a **G8 quality material**. The material is not suitable for use in construction but can be utilised for general fills and landscaping.

The residual shale generally grades as having a major sand component with a minor clay component in some samples, and grades as having a major silt and clay component with a minor sand component in some samples. According to the laboratory test results, **PI** values ranging from 16.2 to 17.6 and **LS** values ranging from 7.7 to 8.3% were attained. According to Burmester (1949), the sampled material displays “Medium Plasticity” soil properties. According to Van der Merwe (1964), the material has “Low potential” to “Medium potential” expansivity. The attained **LS** values indicates that the residual shale will be subjected to minor shrinkage on drying out. A **CBR** strength value of 1 was attained at 95 % of Mod AASHTO compaction. According to COTO (2020) the material, the residual shale material could not be classified, and is therefore not suitable for use in construction.

The hardpan calcrete generally grades as having a major sand component with a minor gravel component. According to the laboratory test results, a **PI** value of 0 and a **LS** value of 0.0% were attained. According to Burmester (1949), the sampled material displays “Non-Plastic” soil properties. According to Van der Merwe (1964), the hardpan calcrete generally has low potential expansivity. A **CBR** strength value of 16 was attained at 95 % of Mod AASHTO compaction. According to COTO (2020) the material classifies as a **G8 quality material**. The material is not suitable for use in construction but can be utilised for general fills and landscaping.

The shale bedrock generally grades as having a major sand component with a minor gravel component. According to the laboratory test results, a **PI** value of 0 and a **LS** value of 0.0% were attained. According to Burmaster (1949), the sampled material displays “Non-Plastic” soil properties. A **CBR** strength value of 23 was attained at 95 % of Mod AASHTO compaction. According to COTO (2020) the material classifies as a **G6 quality material**. The material is suitable for use in construction layerworks. It must be noted that shale bedrock weathers rapidly when exposed to elements.

## 9.2 Falling Head Permeability

One (1No.) drained shear box test was carried out from the material sampled from trial pit TP13 over a depth range of 1.10 to 2.40 m below NGL. The falling head permeability test results indicate that the hardpan calcrete sampled from trial pit TP13, obtained an average permeability value of  $2.25 \times 10^{-4}$  cm/s. According to Terzaghi et al. 1996, the permeability value indicates “poor” draining properties.

*Table 9-4: Falling Head Permeability Test Results*

| Trial Pit | Depth (m)   | Dry density (kg/m <sup>3</sup> ) | Moisture Content (%) | Permeability (cm/s)   |
|-----------|-------------|----------------------------------|----------------------|-----------------------|
| TP13      | 1.10 – 2.40 | 1677                             | 12.4                 | $2.25 \times 10^{-4}$ |

## 9.3 Chemical Test – Basson Index

A guideline on the interpretation of the  $N_c$  value is given in Table 9-5, with a summary of Basson Index values presented in Table 9-6 below.

*Table 9-5: Guidelines for Assessing Overall Aggressiveness ( $N_c$ )*

| $N_c$                | Aggressiveness   |
|----------------------|------------------|
| Not greater than 300 | None to mild     |
| 400 - 700            | Mild to moderate |
| 800 - 1000           | High             |
| = or > 1100          | Very High        |

*Table 9-6: Summary of Selected Determinants from Chemical Testing*

| TP No. | Depth (m) | Description | $N_c$      | Corrosivity Indices – Corrosiveness Towards Steel | Basson Index – Aggressiveness Towards Buried Concrete | Recommendation based on $N_c$ Results                |
|--------|-----------|-------------|------------|---------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| TP9    | 0.50      | Aeolian     | <b>260</b> | <b>Corrosive</b>                                  | <b>Aggressive</b>                                     | Use concrete class as required for structural design |
| TP16   | 0.50      | Colluvium   | <b>502</b> | <b>Non-Corrosive</b>                              | <b>Aggressive</b>                                     | Use concrete class as required for structural design |

| TP No. | Depth (m) | Description        | N <sub>c</sub> | Corrosivity Indices – Corrosiveness Towards Steel | Basson Index – Aggressiveness Towards Buried Concrete | Recommendation based on N <sub>c</sub> Results       |
|--------|-----------|--------------------|----------------|---------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| TP18   | 0.50      | Calcrete – Bedrock | 163            | Non-Corrosive                                     | Aggressive                                            | Use concrete class as required for structural design |
| TP20   | 0.50      | Residual Shale     | 200            | Corrosive                                         | Aggressive                                            | Use concrete class as required for structural design |
| TP27   | 0.50      | Shale - Bedrock    | 345            | Non-Corrosive                                     | Aggressive                                            | Use concrete class as required for structural design |

Based on the laboratory results, the overall aggressiveness (N<sub>c</sub>) ranges from 163 to 502 for the material sampled across the Paardevlei Solar PV Farm development site. According to guidelines for assessing overall aggressiveness, the material generally indicates “None to Mild” and “Mild to Moderate” aggressiveness. The corrosivity indices indicates “Non-Corrosive” to “Corrosive” subsurface conditions. According to the Electrical Resistivity Survey (**ERS**) results, the subsurface conditions on site are generally “Very Mildly Corrosive” to “Very Severely Corrosive”.

The Basson Index (Corrosivity Indices) laboratory test is the most accurate test compared to the **ERS**. It is inferred that the subsurface conditions on site are variable and both “Non-Corrosive” to “Corrosive” subsoils were encountered. It is recommended that the design of subsurface structures should be designed for “Corrosive” subsurface conditions.

The sampled material is generally aggressive towards buried concrete and fibre cement pipes, and is corrosive towards steel.

A full set of the resistivity survey results is included in the “Resistivity Survey” report which is presented in **Appendix F**.

#### 9.4 Thermal Dissipation Capacity

Thermal conductivity is the measure of material’s ability to conduct heat, and it is proportional to the moisture content and inversely proportional to the thermal resistance. A summary of the thermal resistivity results is presented in Table 9-7 below.

*Table 9-7: Summary of Thermal Resistivity Results*

| TP No. | Depth (m) | Lithology        | Moisture Content (%) | Thermal Resistivity (K.m/W) | Thermal Conductivity (W/m.K) |
|--------|-----------|------------------|----------------------|-----------------------------|------------------------------|
| TP9    | 0.50      | Aeolian          | 0.50                 | 9.3168                      | 0.1073                       |
|        |           |                  | 2.00                 | 7.0922                      | 0.1410                       |
| TP16   | 0.50      | Colluvium        | 0.50                 | 8.6705                      | 0.1153                       |
|        |           |                  | 2.00                 | 6.4655                      | 0.1547                       |
| TP18   | 0.50      | Hardpan Calcrete | 0.50                 | 6.2762                      | 0.1593                       |

| TP No. | Depth (m) | Lithology      | Moisture Content (%) | Thermal Resistivity (K.m/W) | Thermal Conductivity (W/m.K) |
|--------|-----------|----------------|----------------------|-----------------------------|------------------------------|
|        |           |                | 2.00                 | 5.4348                      | <b>0.1840</b>                |
| TP20   | 0.50      | Residual Shale | 0.50                 | 6.4655                      | <b>0.1547</b>                |
|        |           |                | 2.00                 | 5.9172                      | <b>0.1690</b>                |
| TP27   | 0.50      | Colluvium      | 0.50                 | 8.0429                      | <b>0.1243</b>                |
|        |           |                | 2.00                 | 6.1475                      | <b>0.1627</b>                |

A total of five (5No.) thermal resistivity tests were conducted across the Paardevlei Solar PV Farm site. The sampled material was retrieved at a fixed depth of 0.50 m below NGL corresponding to approximate cable burial depths. The test results generally indicate that at lower moisture contents (0.50%), relatively higher thermal resistivity values were obtained. Conversely, at higher moisture contents (2.0%) lower thermal resistivity values were obtained.

According to the thermal resistivity test results for the Paardevlei Solar PV Farm development site, the thermal resistivity of the sampled material ranged from 5.4348 to 7.0922 K.m/W at a test moisture content of 2.0%, which is representative of *in-situ* moisture conditions.

Thermal conductivity is the inverse of thermal resistivity as such high thermal resistivity values will have a corresponding low thermal conductivity value. At a moisture content of 2.0%, the material averaged a thermal resistivity value of 6.21 K.m/W and thermal conductivity value of 0.16228 W/K.m. Thermal bedding material must take these values into account.

According to SANS 10198-5:2004 “The selection, handling, and installation of electric power cables of rating not exceeding 33 kV: Determination of thermal and electrical resistivity of soil”, when thermal resistivity of the soil is high, cables will need to be derated so that the cable temperature does not exceed the design value. SANS 10198:5 further suggest that stabilised cable surrounding should ideally have a dried out thermal resistivity ranging from 1.20 to 1.50 K.m/W provided adequate compaction is achieved.

The thermal resistivity of the material on site exceeds the ideal value of 1.20 to 1.50 K.m/W.

## 9.5 Remoulded Drained Shear Box

One (1No.) drained shear box test was carried out from the material sampled from trial pit TP13. The shear box test results indicate that the hardpan calcrete has an internal effective friction angle ( $\phi'$ ) value of 39.4° and effective cohesion ( $c'$ ) value of 0.0 kPa. It is recommended that a value of 35° and 0 kPa, be used for the effective friction and cohesion values respectively for the hardpan calcrete.

Based on the DPSH and DPL test results which indicates the aeolian horizon has a medium dense consistency. it is inferred that the aeolian horizon has an effective internal friction angle of 30° and an effective cohesion of 0 kPa.

Table 9-8: Remoulded Drained Shear Box Test Results

| Trial Pit | Depth (m)   | Description      | Effective Internal Friction Angle (°) | Effective Cohesion (kPa) |
|-----------|-------------|------------------|---------------------------------------|--------------------------|
| TP13      | 1.10 – 2.40 | Hardpan Calcrete | 39.4                                  | 0.0                      |

## 9.6 Standard Consolidation

One (1No.) standard consolidation test was carried out from the residual shale horizon material sampled from trial pit TP7 over a depth range of 0.30 – 1.70 m below NGL. The standard consolidation test results indicate a consolidation settlement ranging from 57.4 to 68.6 mm for foundation pressures ranging from 50 to 200 kPa in the clayey gravelly sand residual shale horizon over a depth range of 0.30 to 1.70 m below NGL. Based on the estimated consolidation settlement, the residual shale horizon on site is highly compressible.

Deep residual shale was encountered on the south-eastern portion of the site. Based on the laboratory results, the clayey residual shale is compressible and has medium potential expansivity soil properties. It is recommended that no structure be founded directly on the residual shale horizon without undertaking ground improvement measures.



Figure 9-1: Residual shale excavation spoil adjacent to trial pit TP7 (left) and residual shale excavation spoil adjacent to trial pit TP25

Table 9-9: Summary of Standard Consolidation Test Results

| Sample No.                                                                                          | Depth (m)   | Material Origin | Assumed Foundation Pressure (kPa) | Thickness of clay layer (m) | Standard Consolidation                         |                                         |
|-----------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------------------------|-----------------------------|------------------------------------------------|-----------------------------------------|
|                                                                                                     |             |                 |                                   |                             | Volume of Compressibility (m <sup>2</sup> /kN) | Estimated Consolidation Settlement (mm) |
| TP7                                                                                                 | 0.30 – 1.70 | Residual Shale  | 50kPa                             | 1.40                        | 8.2x10 <sup>-4</sup>                           | 57.4                                    |
|                                                                                                     |             |                 | 100kPa                            |                             | 4.9x10 <sup>-4</sup>                           | 68.6                                    |
|                                                                                                     |             |                 | 200kPa                            |                             | 2.4x10 <sup>-4</sup>                           | 67.2                                    |
| $m_v = \left(\frac{1}{1+e_0}\right) \left(\frac{e_0 - e_1}{\sigma'_{1-\sigma'} - \sigma'_0}\right)$ |             |                 |                                   |                             |                                                |                                         |

## 10 GEOTECHNICAL APPRAISAL

### 10.1 PV Plant Site - Allowable Bearing Pressures

A total of fifteen (15No.) DPSH tests were carried across the Paardevlei Solar PV Farm. The subsoils generally displayed uncorrected SPT “N” values ranging from 7 to 32 over a depth range of 2.10 m to 3.00 m below NGL. An average uncorrected SPT “N” value of 15 can be anticipated over a depth range of 2.10 m to 3.00 m below NGL. DPSH refusal was encountered in all 15No. DPSH positions in the aeolian horizon, residual shale horizon, hardpan calcrete and shale bedrock conditions over a depth range of 1.70 m to 7.80 m below NGL.

Based on DPL test results, the subsoils generally displayed uncorrected SPT “N” values ranging from 3 to 27 over a depth range of 0.00 m to 2.10 m below NGL. DPL refusal was encountered in all the DPL positions in the non-engineered fill horizon, aeolian horizon, residual shale horizon, hardpan calcrete and shale bedrock condition over a depth range of 0.30 m to 2.40 m below NGL.

### 10.2 Ground Stability

The study site is underlain at depths by non-engineered fill, colluvium, aeolian, residual shale horizon, hardpan calcrete and weathered shale bedrock. Colluvium horizon was generally intersected across the upper soil profile on site. The DPL test results, indicates that the unconsolidated aeolian horizon is generally medium dense in consistency.

It is recommended that areas in which the vegetation is removed, be suitably revegetated soon after construction so as to prevent excessive wind erosion. No signs of slope instability were observed during the investigation.

### 10.3 Excavation Conditions

“Soft” excavation conditions can be anticipated in the non-engineered fill, colluvium, aeolian, residual shale horizons, and soft bedrock conditions (calcrete and shale) over a depth range of 0.00 m to 3.00 m below NGL. “Intermediate” excavation conditions can be anticipated in the medium rock strength bedrock (calcrete and shale) over a depth range of 0.70 m to depths greater than 3.00

m below NGL. “Hard” excavation and “Boulder” excavation conditions are not anticipated over a depth range of 0.00 to 3.00 below NGL. Excavation classes according to COTO (2020) are described in Table 10-1.

*Table 10-1: Summary of Excavation Conditions (COTO, 2020)*

| Class of Excavation    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Soft</b>            | <p>Material that can be efficiently excavated, without prior ripping by the following equipment:</p> <ul style="list-style-type: none"> <li>• Bulldozer with a mass of at least 22 tons and an engine developing approximately 145 kW at the flywheel.</li> <li>• A tractor-scaper unit with a mass of at least 28 tons and an engine developing approximately 245kW at the flywheel, pushed by a bulldozer during loading (35 tons, 220 kW).</li> <li>• Track-type front end loader with a mass of at least 22 tons and an engine developing approximately 140 kW at the flywheel.</li> </ul> |
| <b>Intermediate</b>    | <p>Material that can be efficiently ripped by a bulldozer with a mass of at least 35 tons when fitted with a single tine ripper and an engine developing approximately 220 kW at the flywheel.</p>                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Hard</b>            | <p>Material that cannot be efficiently ripped by a bulldozer equivalent to that described for Intermediate Excavation and requires blasting.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Boulder Class A</b> | <p>Material containing in excess of 40% by volume of boulders between 0.03 m<sup>3</sup> and 20 m<sup>3</sup> in size, in a matrix of softer material or smaller boulders.</p>                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Boulder Class B</b> | <p>Materials containing 40% or less by volume of boulders ranging from 0.03 m<sup>3</sup> to 20 m<sup>3</sup> in size, in a matrix of soft material or smaller boulders</p>                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### 10.4 Cut and Fill Slopes

It is recommended that all earthworks be carried out in accordance with SANS 1200DB: 1989, as amended from time to time. Temporary support for the proposed structures will be required for depths exceeding 1.50 m below NGL. This must be assessed on site by the contractor’s duly appointed “competent person” as required by the Construction Regulations 2003.

Fill embankments should not exceed 1V:2H units (26°). Fill heights of greater than 1.50 m will need more detailed geotechnical analysis in order to determine the slope stability and need for subgrade treatment.

Trenches should not exceed 1V:2H units (26°) in the non-engineered fill, colluvium and aeolian horizon for depths of up to 1.50 m. The sand is unstable when unretained, therefore, we recommend 1V:3H (18°) slope where cut batters are required. Trenches should not exceed 1V:1.75H

units (30°) in the residual shale horizon for depths of up to 1.50 m. Trenches should not exceed 1V:1H units (45°) in the calcrete and shale bedrock for depths of up to 1.50 m. Trenches to be shored where groundwater seepage is intersected or unstable sidewalls are observed.

## 10.5 Groundwater and Drainage

Groundwater seepage was only intersected in trial pit TP29 at a depth of 2.20 m below NGL. The development area undulates, which promotes free drainage towards non-perennial features and as such minimal landscaping and drainage measures will be required. Buoyancy effects are not anticipated at the Paardevlei Solar PV Farm development site.

It is imperative that appropriate drainage measures be implemented throughout the development to ensure that surface water is diverted away from the vicinity of the proposed structures and its foundations. This is to ensure that the integrity of the structure is not compromised due to lowered subsoil strength that could lead to differential settlement. Surface run-off should therefore be diverted away from the foundation via subsurface drains.

## 10.6 Erosion Control

The colluvium and aeolian horizons are potentially erodible and susceptible to wind erosion once the covering grassland vegetation is disturbed. It is recommended that areas in which the vegetation is removed be suitably revegetated soon after construction so as to prevent excessive wind erosion.

# 11 FOUNDATION RECOMMENDATIONS

## 11.1 Solar PV Modules

Due to the presence of non-engineered fill, colluvium, aeolian, residual shale horizon, and bedrock conditions (calcrete and shale) across the Paardevlei Solar PV Farm study area over a depth range of 0.00 to 3.00 m below NGL, consideration can be given to a combination of driven piles and pre-bored holes for piled structural foundations.

## 11.2 Driven Piles

Rammed piles can be considered in areas underlain by deep aeolian horizon. These areas are illustrated on the Engineering Geological Map, **Figure 8**, showing extrapolated geotechnical conditions.

## 11.3 Bored Piles

Pre-bored piles can be considered in areas underlain by hardpan calcrete and shale bedrock conditions. Pre-bored pile options include; piles sleeved into bedrock and concrete encased piles. These areas are illustrated on the Engineering Geological Map, **Figure 8**, showing extrapolated geotechnical conditions.

The structural steel piles are anticipated to be either 'H', 'I' or 'C' section piles.

### 11.3.1 Pre-bored Holes - Piles Sleeved into Bedrock

This involves the use of small diameter percussion bored piles sleeved into bedrock. Embedment depths typically varying between 1.50 m to 5.00 m below NGL. Embedment depths may vary depending on the hardness of the substrata. This pile option offers the advantage of founding the end-bearing pile on a competent stratum.

### 11.3.2 Pre-bored Holes – Concrete Encased Piles

This method entails pre-drilling small diameter percussion bored piles. Thereafter, concrete is pumped and the steel piles are set within the pre-bored soil column. The piles should extend to at least 5.0 m below NGL or to the optimised embedment depth as directed by the design engineer. This option offers the advantage of embedding the pile in concrete, offering better pull-out resistance.

Due to the consolidation risks that are associated with the clayey residual shale horizon, rammed piled are not feasible in areas underlain by deep residual shale. It is recommended that bored piles be used in areas that are underlain by deep residual shale horizon. Piles in the clayey deep residual shale should extend to depths in excess of 5.0 m below NGL. Down drag from the consolidation of the surrounding residual shale should be taken into consideration in the pile design.

## 11.4 Panel Foundations

It is anticipated that the photovoltaic structures will impose relatively light foundation loads, but will exert significant uplift and forces due to persistent wind loads.

The minimum pile embedment depth is calculated from the **base resistance** and **shaft resistance**. The base resistance is a function of the shear strength and unit weight of the *in-situ* soil and the area of the pile.

The shaft resistance is a function of the interface friction angle ( $\delta'$ ), effective stress ( $\sigma'$ ) acting normal to the pile and the coefficient of lateral earth pressure ( $K$ ). The shaft resistance may be calculated using the following formulae:

$$Q_{su} = K \cdot \sigma' \tan \delta'$$

[1]

$$\text{Where; } K = \frac{K}{K_0} = 1, \quad \delta' = 0.75 \phi'$$

The final pile embedment depth of the foundations, should account for total compression loads as a result of the self-weight of the panel structure and the wind loads exerted on the solar panels. Total tension loads should account for wind uplift forces that are greater than normal.

## 11.5 Loading

The loading imposed on the piles includes the self-weight of the panels and piles, wind load imposed on the panels and the load applied by the daily tracking unit. At the time of writing this report, no loads were available. The loads include the following:

- Vertical Direction:
  - $F_{V\text{central\_down}}$  = downward load on central pile
  - $F_{V\text{central\_uplift}}$  = uplift load on central pile
  - $F_{V\text{end\_down}}$  = downward load on end pile
  - $F_{V\text{end\_uplift}}$  = uplift load on end pile
  - $F_{V\text{motor support}}$  = downward on motor foundation
- Horizontal Direction:
  - $F_{h\text{central}}$  = central pile
  - $M_{th\text{central}}$  = moment of central pile
  - $F_{h\text{end pile}}$  = end pile
  - $F_{h\text{motor}}$  = motor foundation

These loads are generally applied to theoretical formulae in order to estimate the vertical settlement, horizontal displacement, rotation and minimum embedment depth of the piles. The calculations are generally carried out according to the Eurocode 7 Design Approach 1b standards.

## 12 CONCLUSION

The foregoing report presents the findings and recommendations from a geotechnical investigation conducted for the Paardevlei Solar PV Farm in Somerset West, Western Cape Province.

- The development area is overlain by non-engineered fill, aeolian, and residual shale horizon which is generally underlain by calcrete and shale bedrock conditions.
- Hardpan calcrete conditions were generally intersected in the south-west portion of the site over a depth of 0.20 m to 2.80 m below NGL.
- Shale bedrock conditions were generally intersected in the north-east portion of the site over a depth range of 0.30 m to 2.30m below NGL.
- Groundwater seepage was only intersected in trial pit TP29 at a depth of 2.20 m below NGL.
- “Soft” excavation conditions can be anticipated in the non-engineered, colluvium, aeolian and residual shale horizon and soft bedrock conditions (calcrete and shale) over a depth range of 0.00 to 3.00 m below NGL.
- “Intermediate” excavation conditions can be anticipated in the medium rock strength bedrock (calcrete and shale) over a depth range of 0.70 m to depths greater than 3.00m.
- “Hard” excavation and “Boulder” excavation conditions are not anticipated on site for depths up to 3.00 m below NGL.
- The colluvium horizon generally grades as having a major sand component with a minor silt component.
- The residual shale horizon generally grades as having a major sand component with a minor clay and silt component in some samples, and grades as having a major silt and clay component and a minor sand component in some samples.
- The sampled calcrete material classifies as a G8 quality material, and is not suitable for use in construction but can be utilised for general fills and landscaping.
- The residual shale displays “low” to “medium” potential expansivity and is compressible.
- The colluvium, aeolian horizon, and hardpan calcrete displays “low” potential expansivity.
- Test results generally indicates that at lower moisture contents, relatively higher thermal resistivity values were obtained, and at higher moisture contents, lower thermal resistivity values were obtained.

- An average thermal resistivity value of 6.21 K.m/W and an average thermal conductivity value of 0.16228 W/ K.m were attained at a moisture content of 2.0%.
- The Basson Index laboratory test indicates “Non-Corrosive” to “Corrosive” subsurface conditions.
- It is recommended that a combination of driven piles and bored piles be considered for the PV plant structures.

### 13 REFERENCES

- Brink, A.B.A. (1985). Engineering Geology of Southern Africa. Post-Gondwana Deposits. Building Publications: Pretoria.
- Campbell, G.S. (2008). Measuring and Modelling Thermal Properties of Porous Materials. Virtual Seminar.
- Jennings, J. E, Brink, A. B. A and Williams, A. B. (1973). Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa. Transactions of the South African Institution of Civil Engineers, Volume 15, Number 1.
- SAPEM Chapter 3 (2014). South African Pavement Engineering Manual, Materials Testing, Chapter 3, pp.8.
- SANS 1200 D (1988). Standardised Specification for Civil Engineering Construction, Section D: Earthworks. South African National Standards.
- Terzaghi, K., Peck, R. B., & Mesri, G. (1996). *Soil mechanics in engineering practice*. John Wiley & Sons, pp 73.
- TRH 14 (1985). Guidelines for Road Construction Materials, Committee of State Road Authorities, pp.1-57.
- TRH 14 (1996). Structural Design of Flexible Pavements for Interurban and Rural Roads, Technical Recommendations for Highways, p.40.

• oOo—

## *Appendix A: Figures*

18°47'20"E

18°48'0"E

34°40"S



## Paardevlei Solar PV Farm

### SITE MAP

Locality Map  
NAMIBIA

Project Area  
Esri, TomTom, FAO, NOAA, USGS

### LEGEND

- DPSH
- TP/DPL
- Area 34 ha
- Area 38 ha
- Area 80 ha

Figure 2

Production Date: 24 January 2024  
Coordinate System: WGS84

0 0,1 0,2 0,3 0,4  
Kilometers


N  
SCALE  
1: 11 000

Compiled By:

JG AFRIKA  
EXPERIENCE QUALITY INTEGRITY



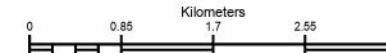
Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.



## Paardevlei Solar PV Farm

## GEOLOGY

## Locality Map NAMIBIA




## LEGEND

|                                                                                     |                                                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------|
|  | Project Area                                    |
|  | Partly calcified dune sand with calcrite lenses |
|  | Light-grey to pale-red sandy soil               |
|  | Brackish, calcareous soil                       |

Figure 3

Production Date: 24 January 2024  
Coordinate System: WGS84



**SCALE**

1: 70,000

Comments Page



Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.





## Paardevlei Solar PV Farm

### GROUNDWATER OCCURRENCE



### LEGEND

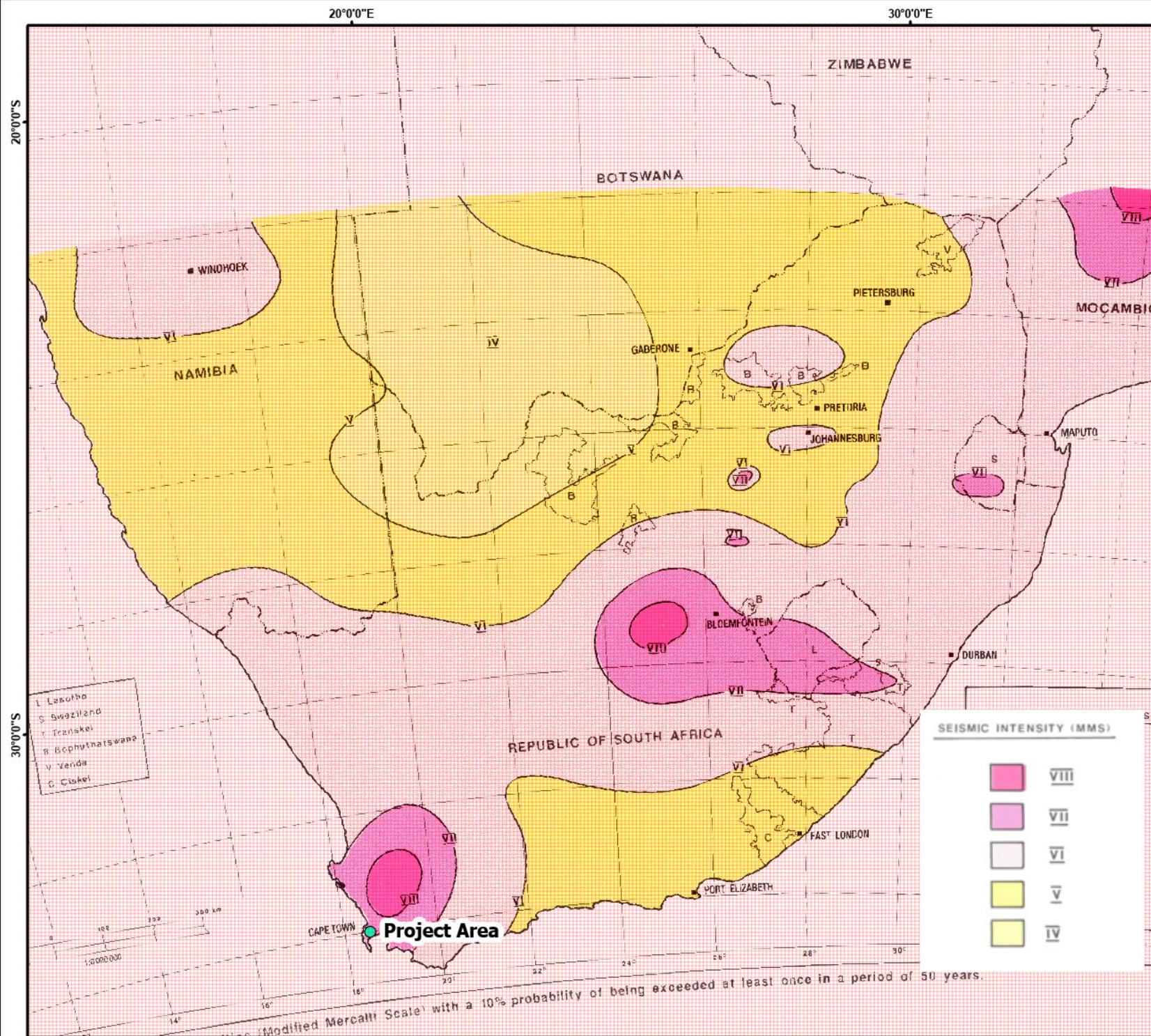
|                                                                                                                             |                                           |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <span style="border: 2px solid yellow; display: inline-block; width: 10px; height: 10px;"></span>                           | Project Area                              |
| Groundwater occurrence                                                                                                      |                                           |
| <span style="background-color: #669999; border: 1px solid black; display: inline-block; width: 10px; height: 10px;"></span> | Fractured 0.5 - 2.0 l/s                   |
| <span style="background-color: #666699; border: 1px solid black; display: inline-block; width: 10px; height: 10px;"></span> | Intergranular 0.5 - 2.0 l/s               |
| <span style="background-color: #CC6666; border: 1px solid black; display: inline-block; width: 10px; height: 10px;"></span> | Intergranular 2.0 - 5.0 l/s               |
| <span style="background-color: #FFCC66; border: 1px solid black; display: inline-block; width: 10px; height: 10px;"></span> | Intergranular and Fractured 0.1 - 0.5 l/s |

Figure 4

Production Date: 24 January 2024  
Coordinate System: WGS84

0      0.4      0.8      1.2      1.6  
Kilometers

SCALE


1: 35 000

Compiled By:

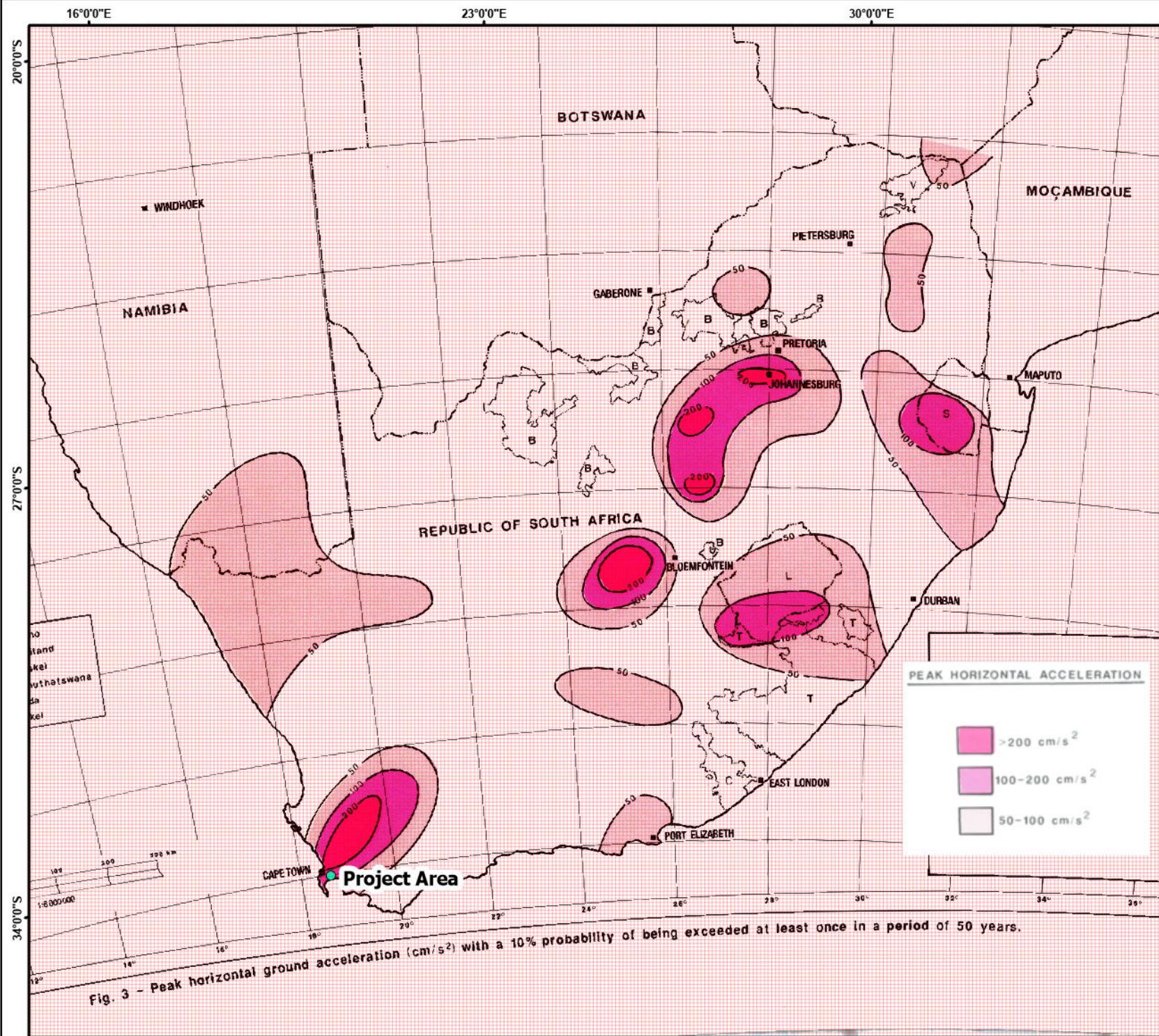
**JG AFRIKA**  
EXPERIENCE   QUALITY   INTEGRITY



Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.



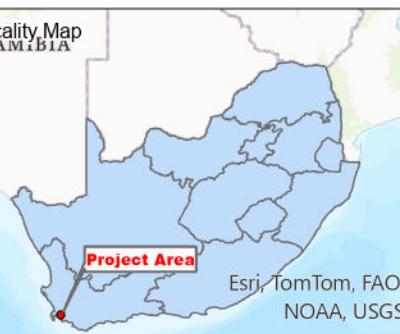
## Paardevlei Solar PV Farm


### SEISMIC INTENSITY

Locality Map NAMIBIA

### LEGEND

Project Area

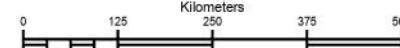

Figure 5



## Paardevlei Solar PV Farm

### PEAK HORIZONTAL ACCELERATION

Locality Map NAMIBIA




### LEGEND

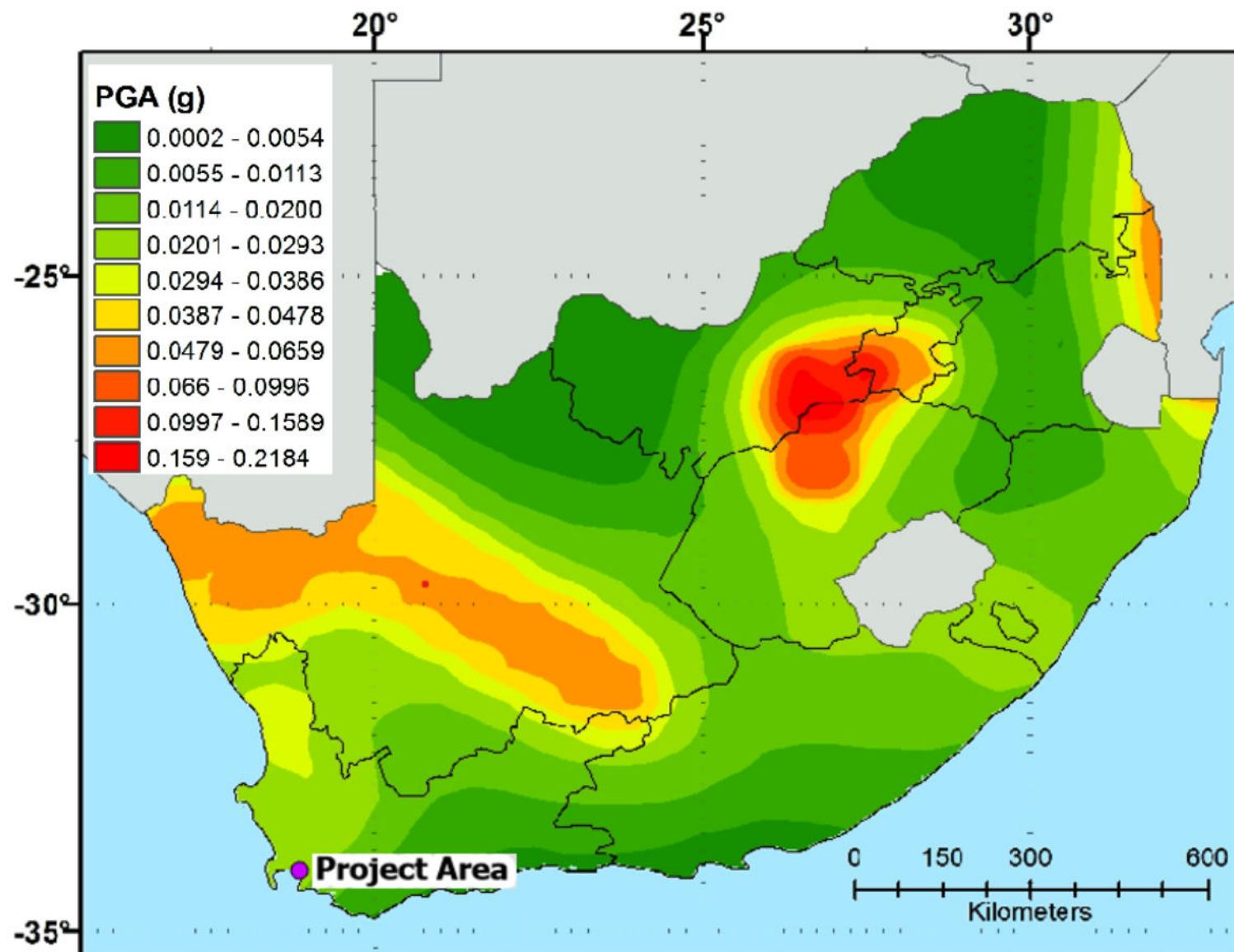
- Project Area

Figure 6

Production Date: 24 January 2024  
Coordinate System: WGS84



SCALE


1: 10 000 000

Compiled By:

**JG AFRIKA**  
EXPERIENCE QUALITY INTEGRITY



Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.



## Paardevlei Solar PV Farm

### HAZARD MAP

Locality Map  
NAMIBIA

Project Area  
Esri, TomTom, FAO, NOAA, USGS

### LEGEND

● Project Area

Figure 7

Production Date: 24 January 2024  
Coordinate System: WGS84



Compiled By:

**JG AFRIKA**  
EXPERIENCE QUALITY INTEGRITY



Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.

18°47'20"E

18°48'0"E

34°40"S



## Paardevlei Solar PV Farm

### ENGINEERING GEOLOGICAL MAP

Locality Map  
NAMIBIA

### LEGEND

|                                                      |                              |
|------------------------------------------------------|------------------------------|
| <span style="color: green;">●</span>                 | DPSH                         |
| <span style="color: yellow;">●</span>                | TP/DPL                       |
| <span style="background-color: cyan;">■</span>       | Intersected Hardpan Calcrete |
| <span style="background-color: lightgreen;">■</span> | Deep Residual Shale          |
| <span style="background-color: pink;">■</span>       | Deep Aeolian                 |
| <span style="background-color: lightblue;">■</span>  | Intersected Shale Bedrock    |
| <span style="background-color: orange;">■</span>     | Intersected Non-Engineered   |
| <span style="background-color: yellow;">■</span>     | Fill                         |
| <span style="color: blue;">■</span>                  | Area 34 ha                   |
| <span style="color: red;">■</span>                   | Area 38 ha                   |
| <span style="color: yellow;">■</span>                | Area 80 ha                   |
| <span style="color: red;">(2.9)</span>               | DPSH Refusal Depth (m)       |
| <span style="color: purple;">(2.9)</span>            | TP Refusal Depth (m)         |
| <span style="color: green;">(2.9)</span>             | DPL Refusal Depth (m)        |

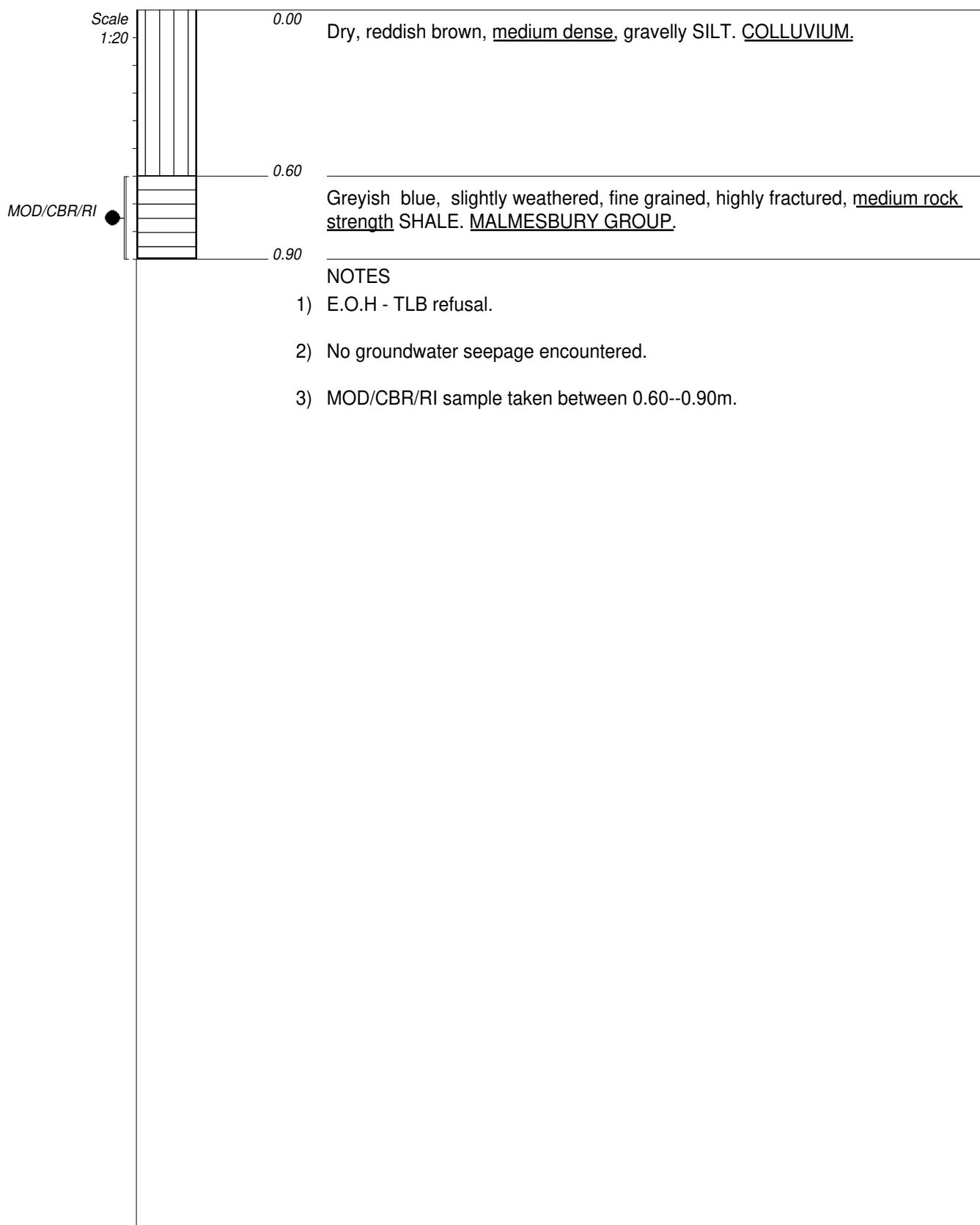
Figure 8

Production Date: 24 January 2024  
Coordinate System: WGS84

0 0.1 0.2 0.3 0.4 Kilometers

SCALE

1: 11 000

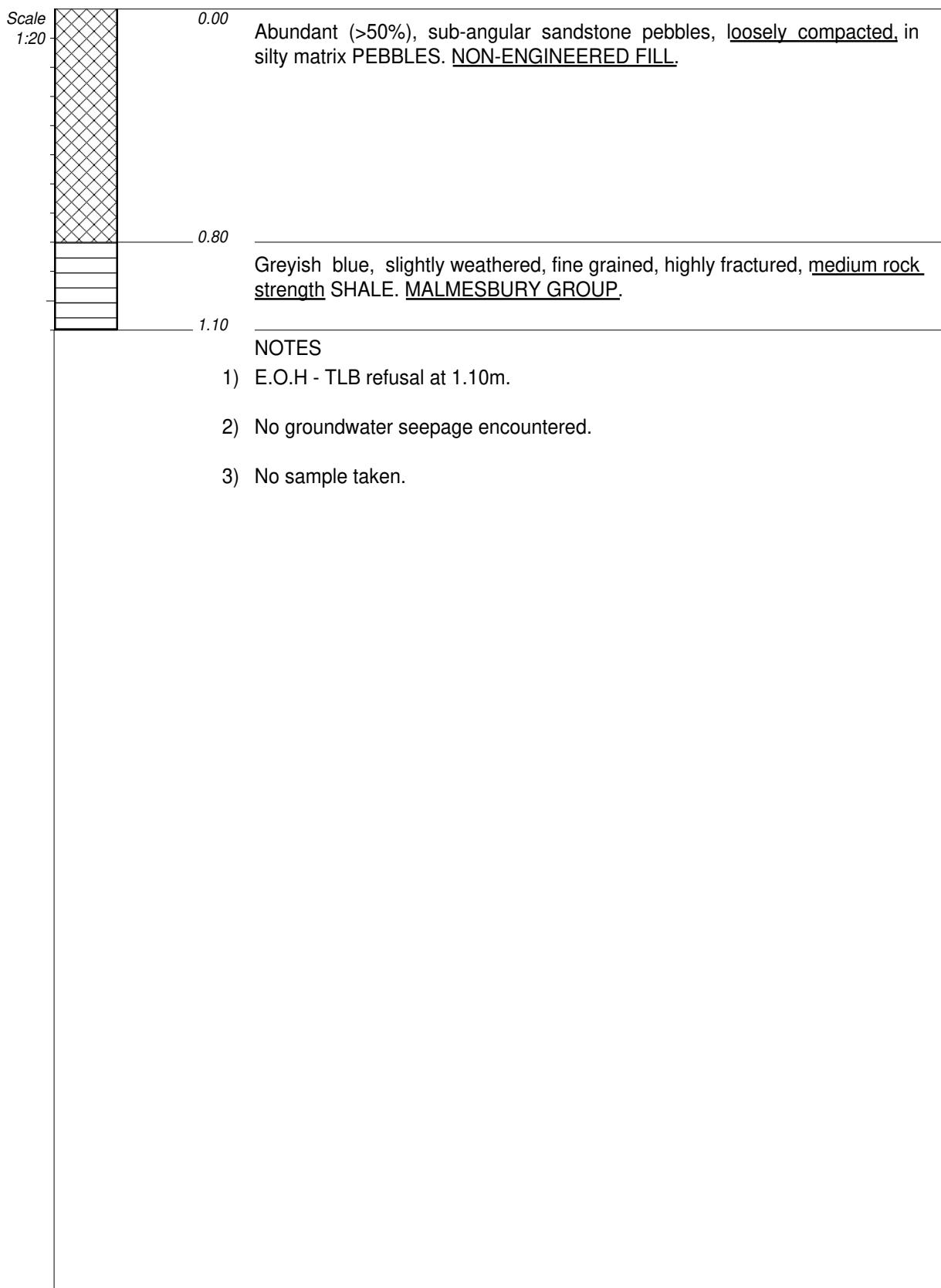

Compiled By:

 **JG AFRIKA**  
EXPERIENCE QUALITY INTEGRITY

Designed and detailed under the controls established by our quality management system that meet the requirements of ISO 9001:2015 which has been independently certified by DEKRA Certification.



## *Appendix B: Trial Pits*

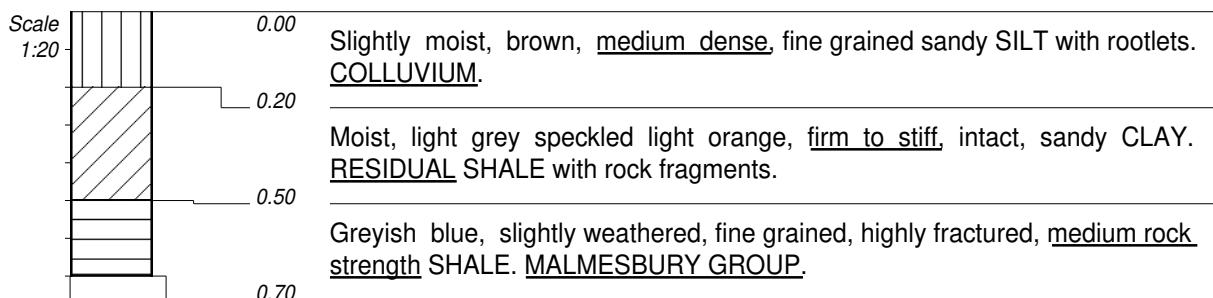



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 3'57.62"S  
 Long.(Y) : 18° 48'1.46"E

HOLE No: TP1



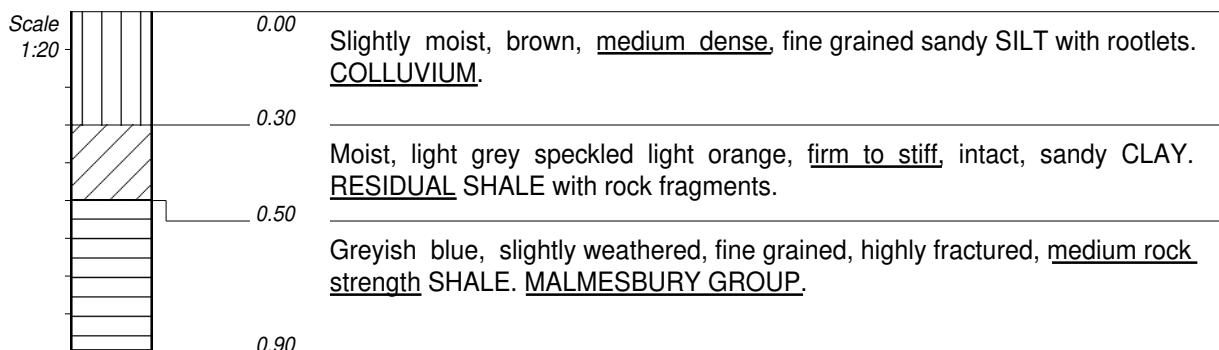

CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'3.97"S  
 Long.(Y) : 18° 47'56.10"E

HOLE No: TP2




## NOTES

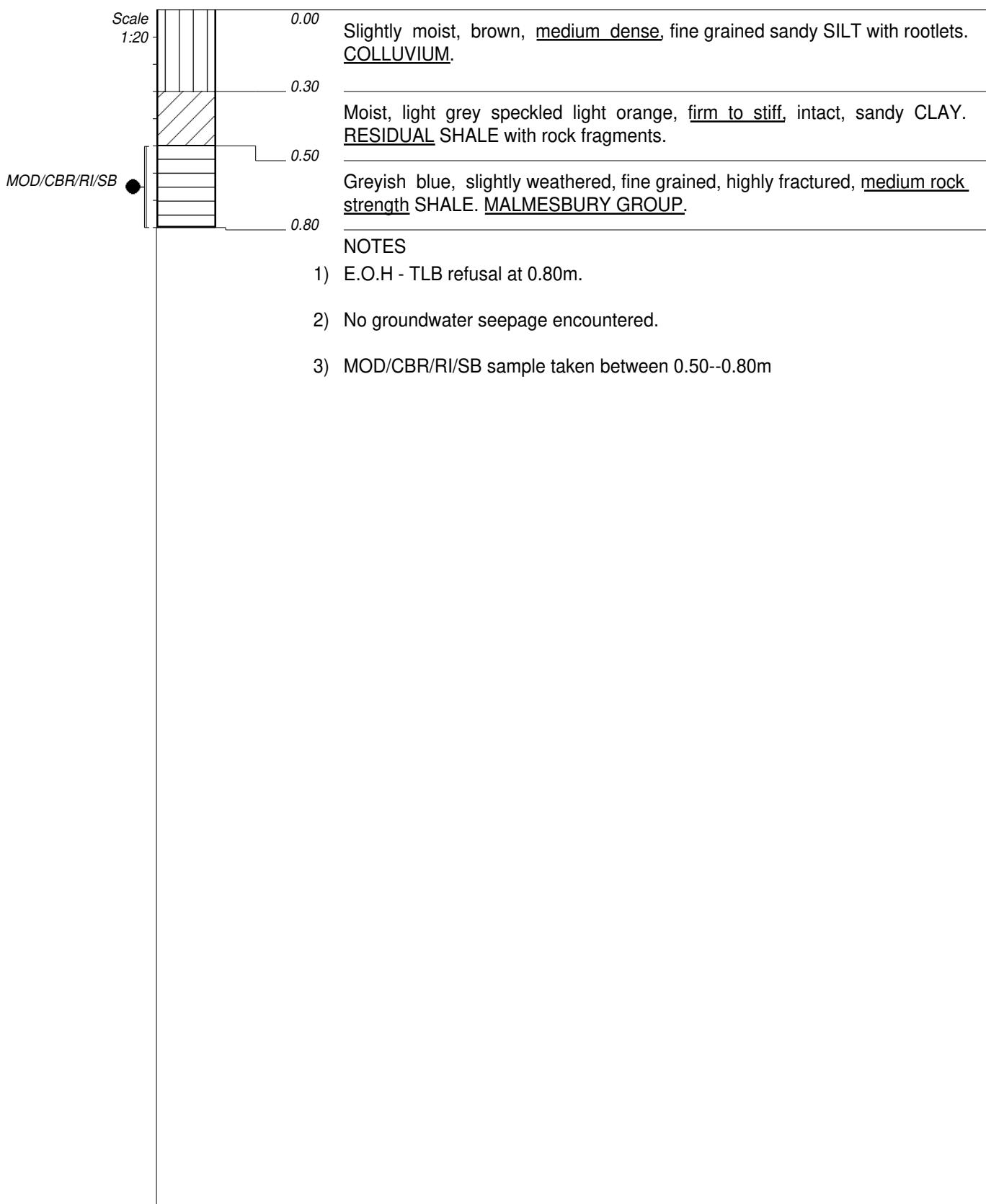
- 1) E.O.H - TLB refusal at 0.70m.
- 2) No groundwater seepage encountered.
- 3) No sample taken.

CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'2.51"S  
 Long.(Y) : 18° 47'47.44"E  
 HOLE No: TP3



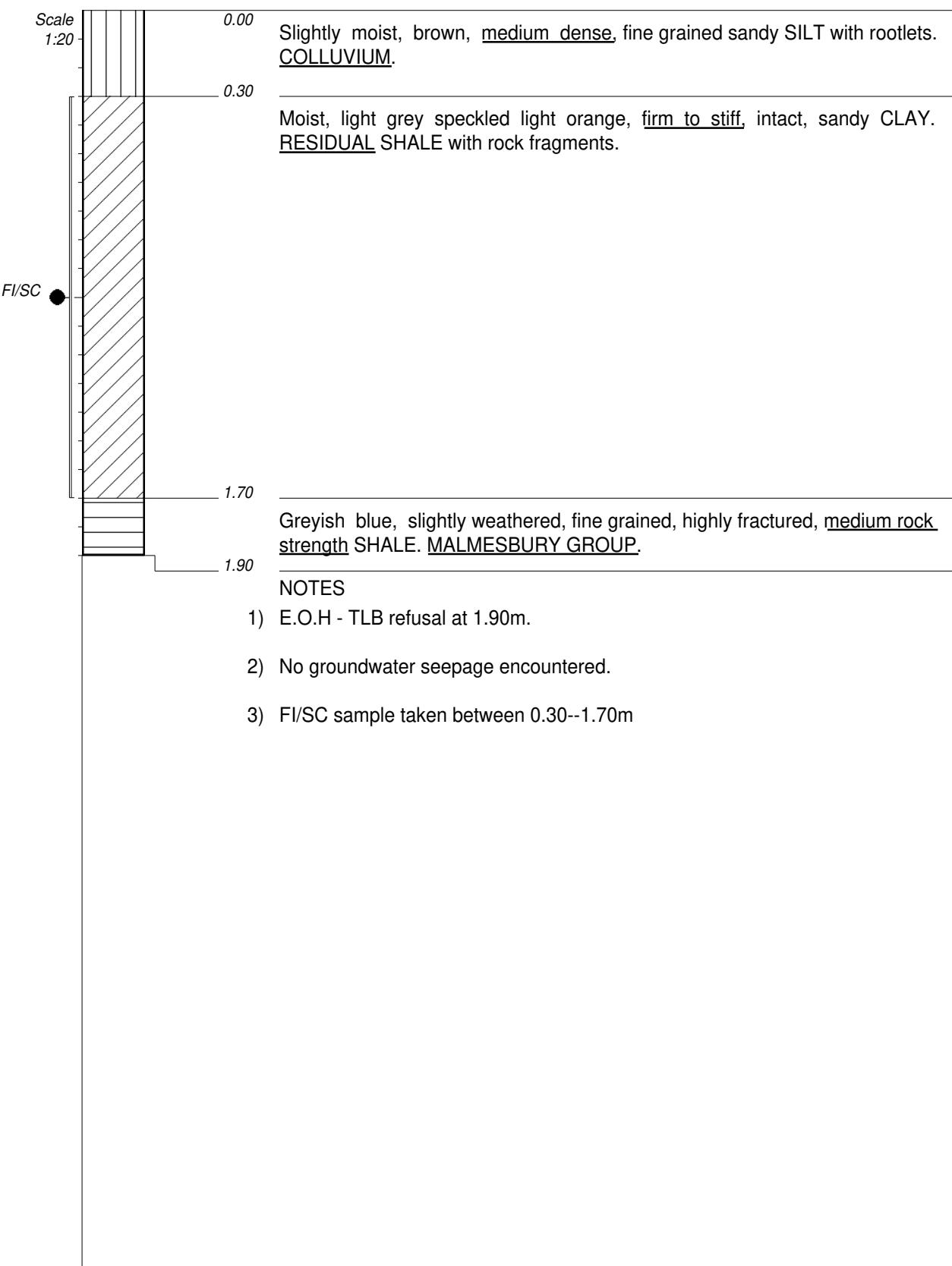

## NOTES

- 1) E.O.H - TLB refusal at 0.90m.
- 2) No groundwater seepage encountered.
- 3) No sample taken.

CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

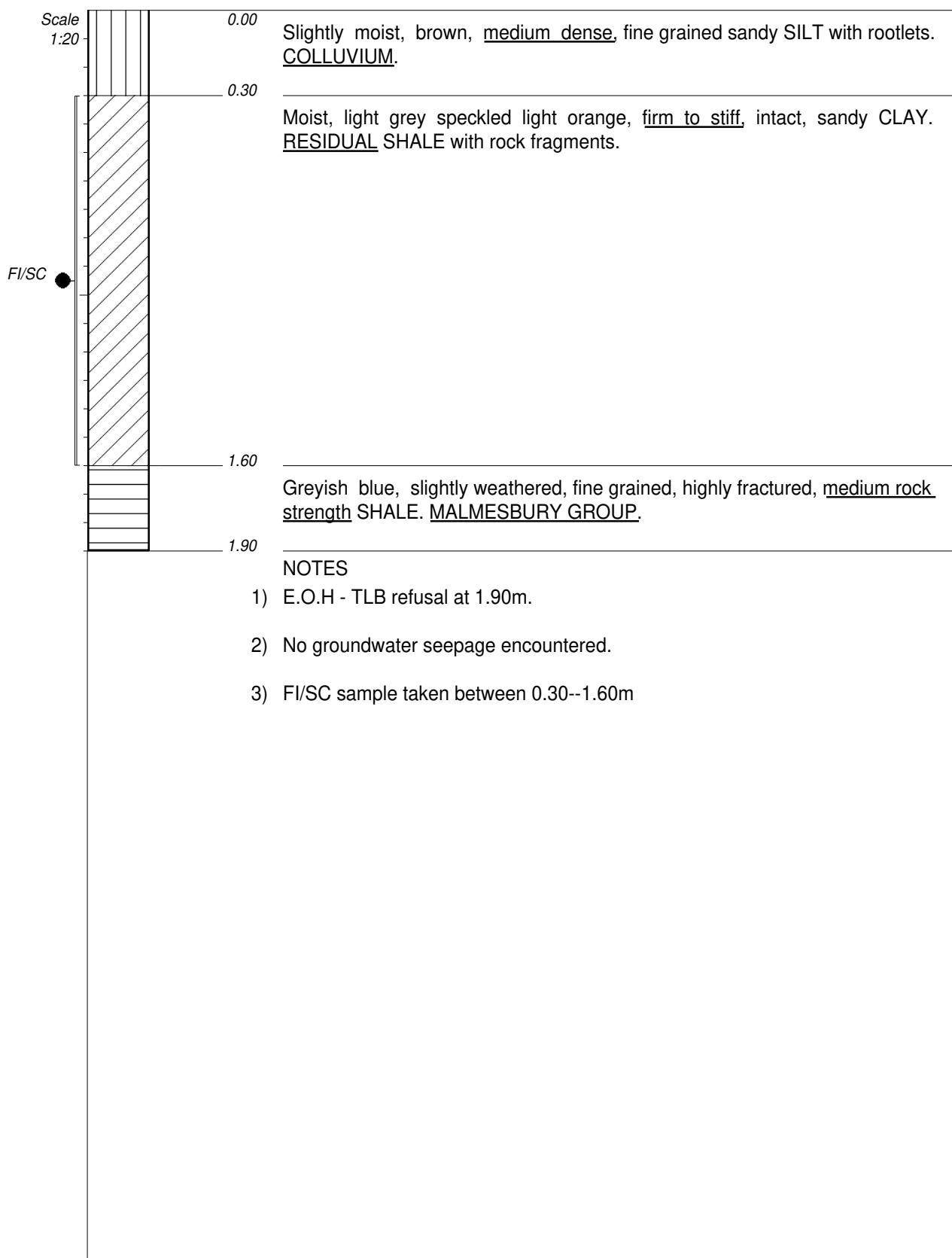
ELEVATION :  
 Lat.(X) : 34° 4'10.49"S  
 Long.(Y) : 18° 47'45.42"E  
 HOLE No: TP4




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

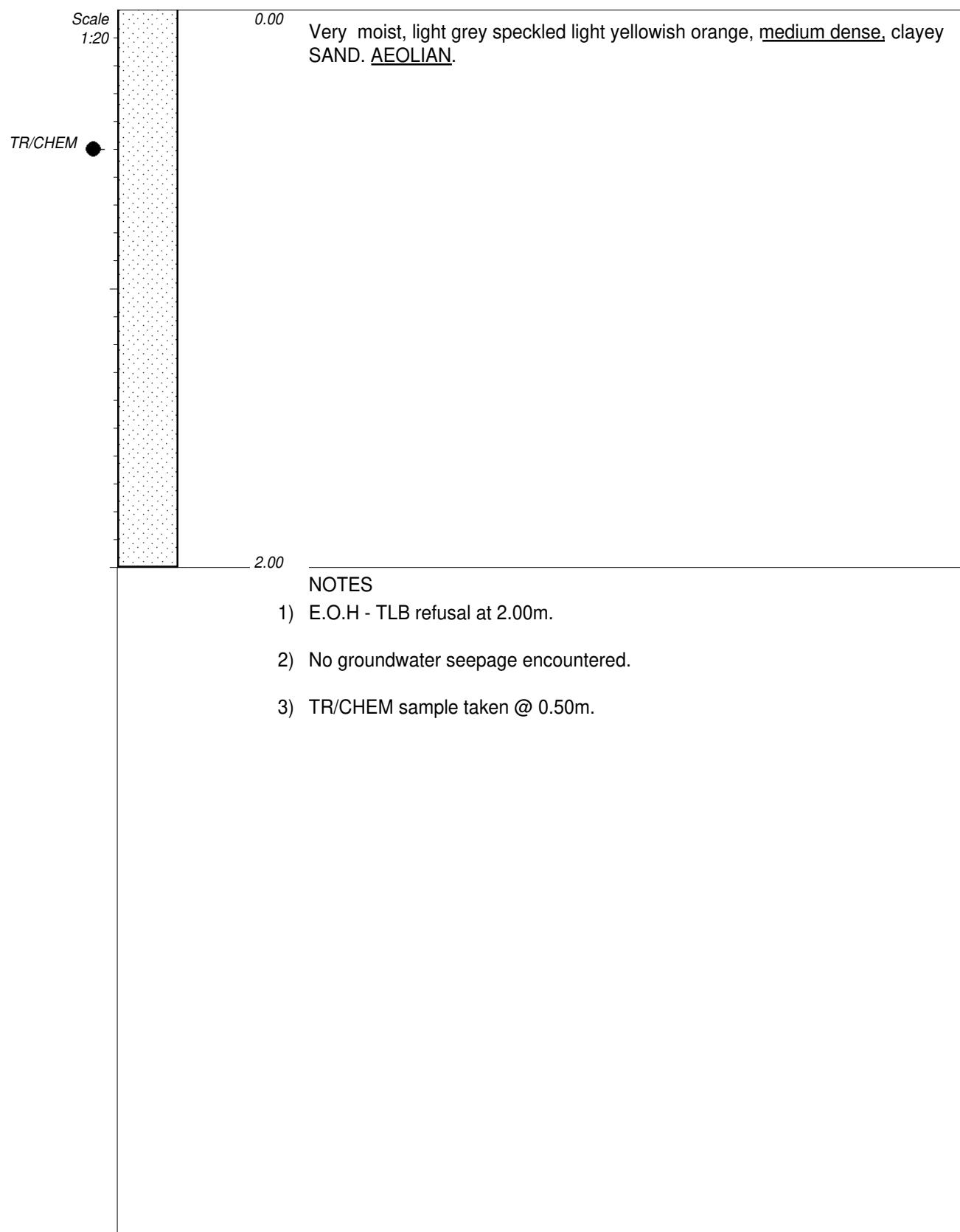
ELEVATION :  
 Lat.(X) : 34° 4'12.91"S  
 Long.(Y) : 18° 47'55.66"E


HOLE No: TP5



**CONTRACTOR :**  
 MACHINE : TLB  
**DRILLED BY :**  
**PROFILED BY :** T. HLONGWANE  
**TYPE SET BY :** T. HLONGWANE  
**SETUP FILE :** TP-JGA-A4.SET

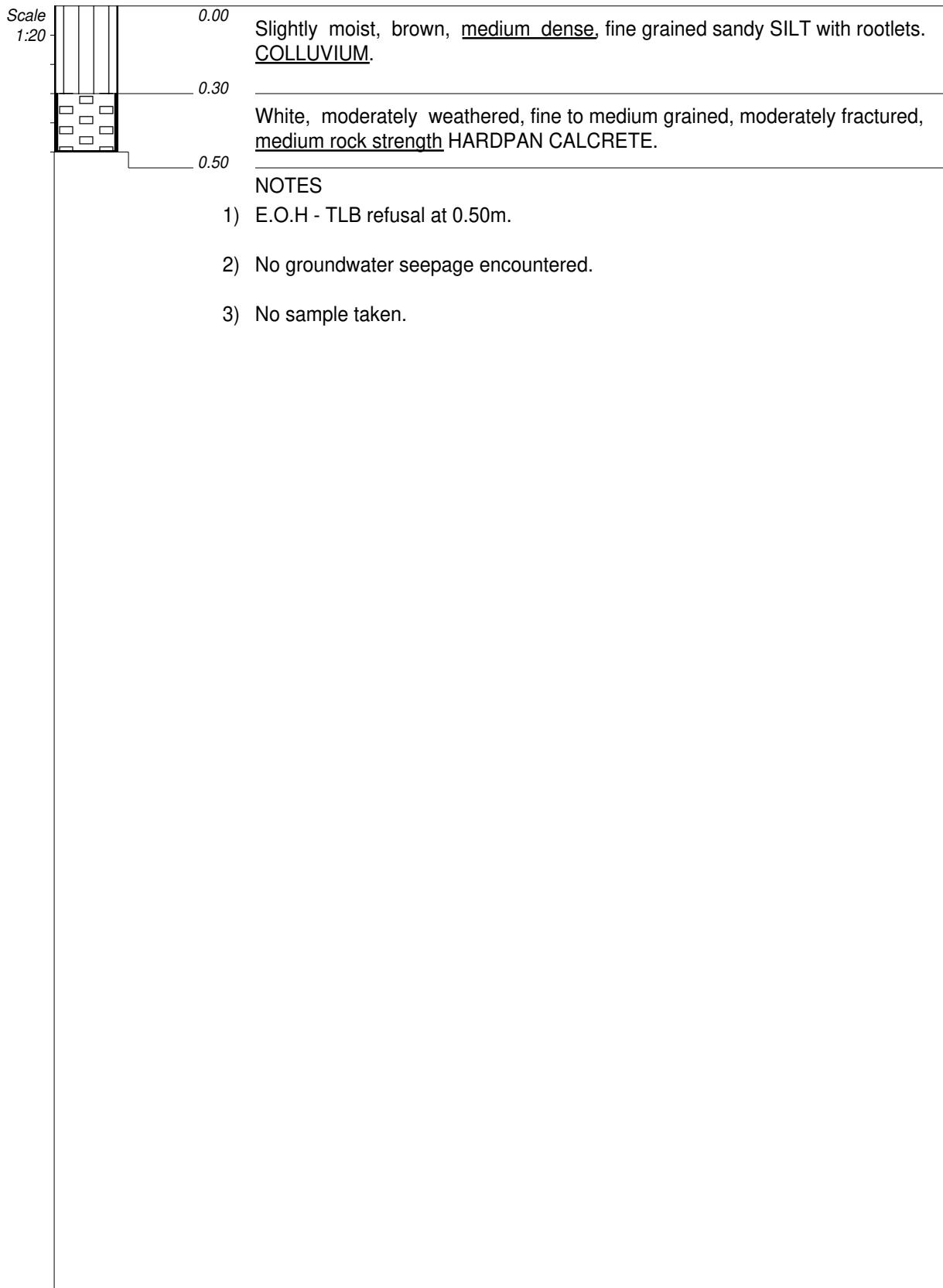
**INCLINATION :**  
**DIAM :**  
**DATE :**  
**DATE :** 04/12/2023 - 06/12/2023  
**DATE :** 08/02/2024 11:54  
**TEXT :** ..AARDEVLEISOLARPVFARM.TXT


**ELEVATION :**  
 Lat.(X) : 34° 4'20.58"S  
 Long.(Y) : 18° 47'36.99"E  
**HOLE No:** TP7



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

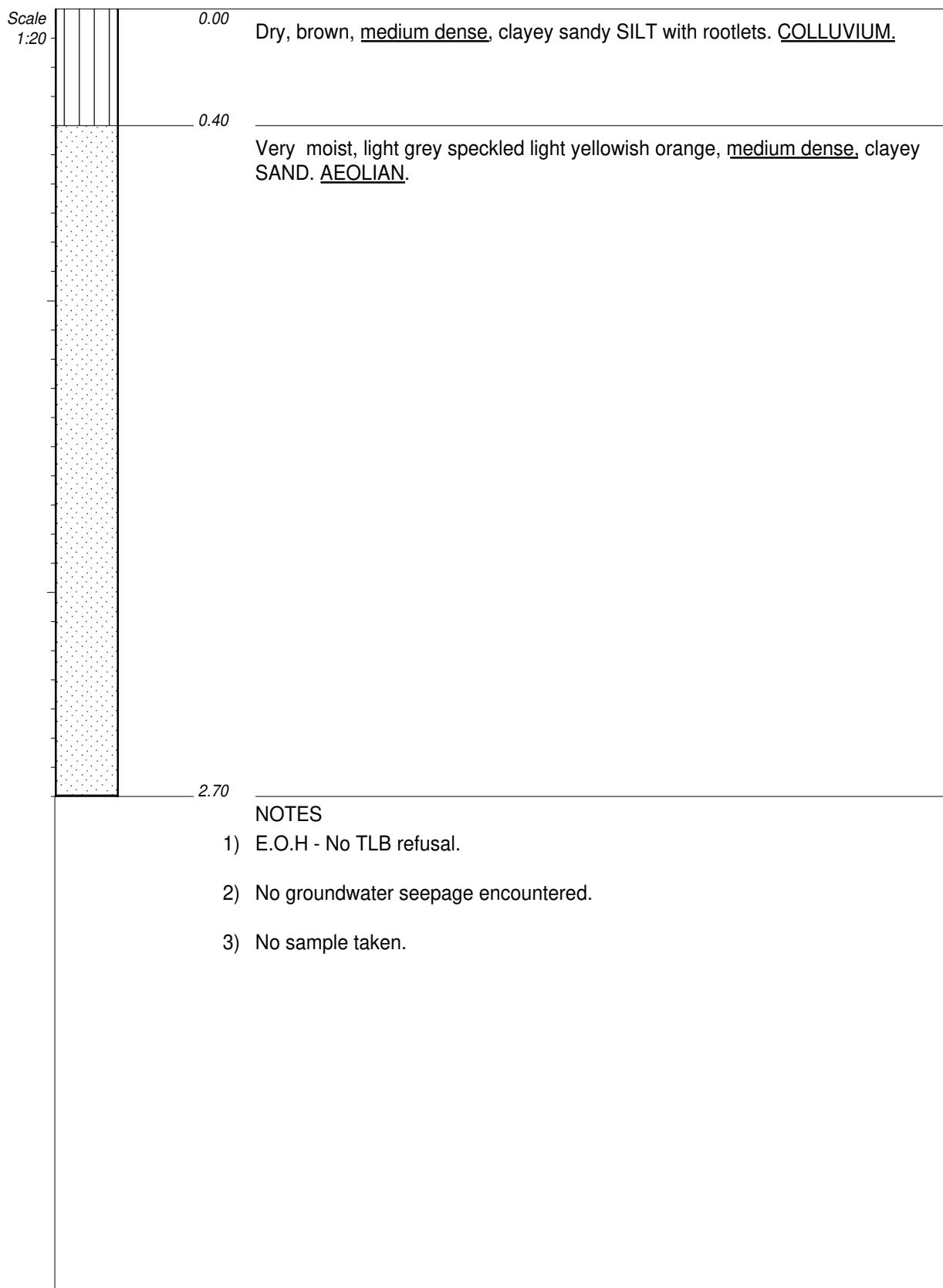

ELEVATION :  
 Lat.(X) : 34° 4'27.47"S  
 Long.(Y) : 18° 47'41.51"E  
 HOLE No: TP8



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'26.77"S  
 Long.(Y) : 18° 47'30.60"E  
 HOLE No: TP9

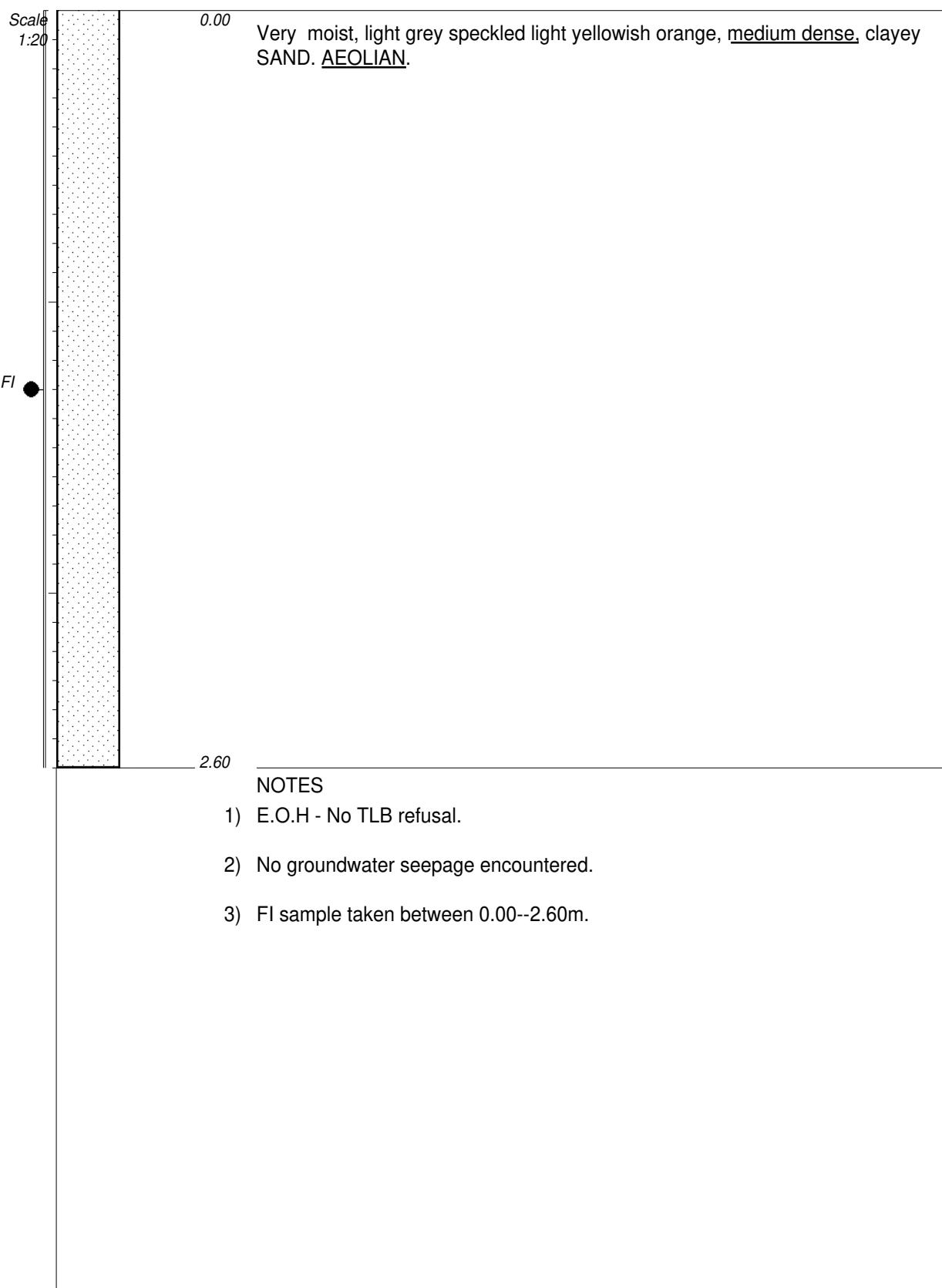



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'27.08"S  
 Long.(Y) : 18° 47'23.98"E

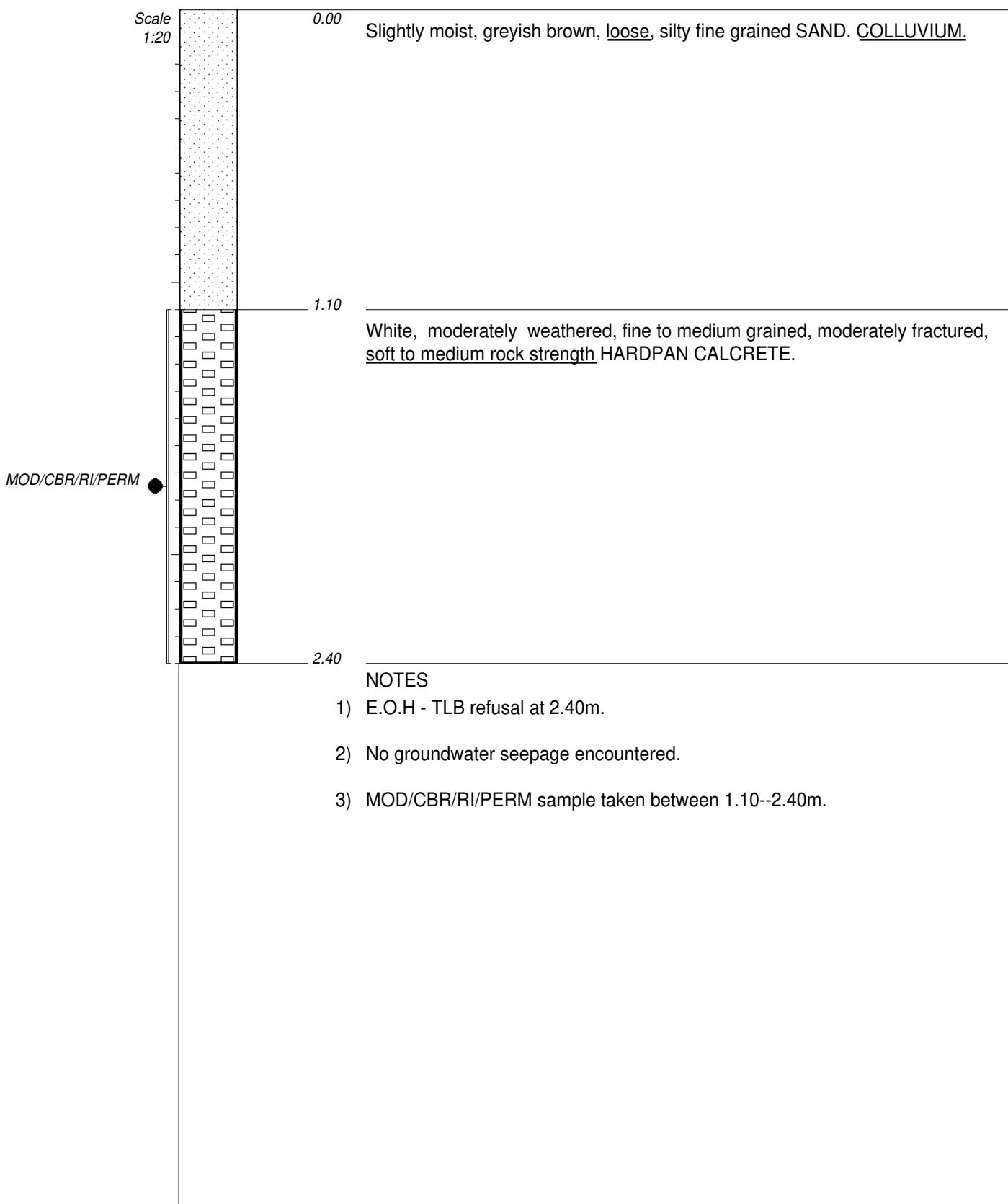
HOLE No: TP10




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

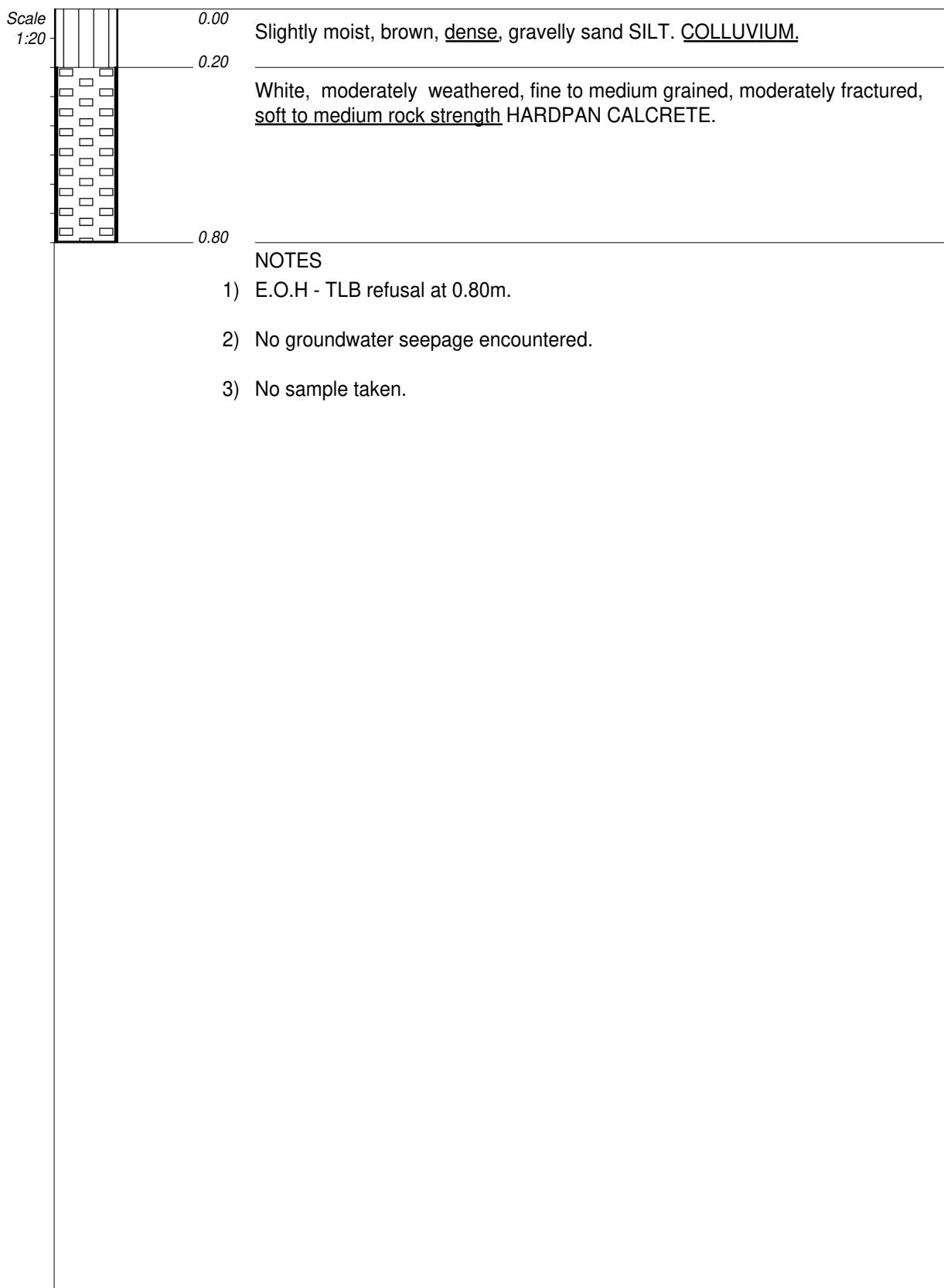
ELEVATION :  
 Lat.(X) : 34° 4'32.24"S  
 Long.(Y) : 18° 47'31.83"E


HOLE No: TP11



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

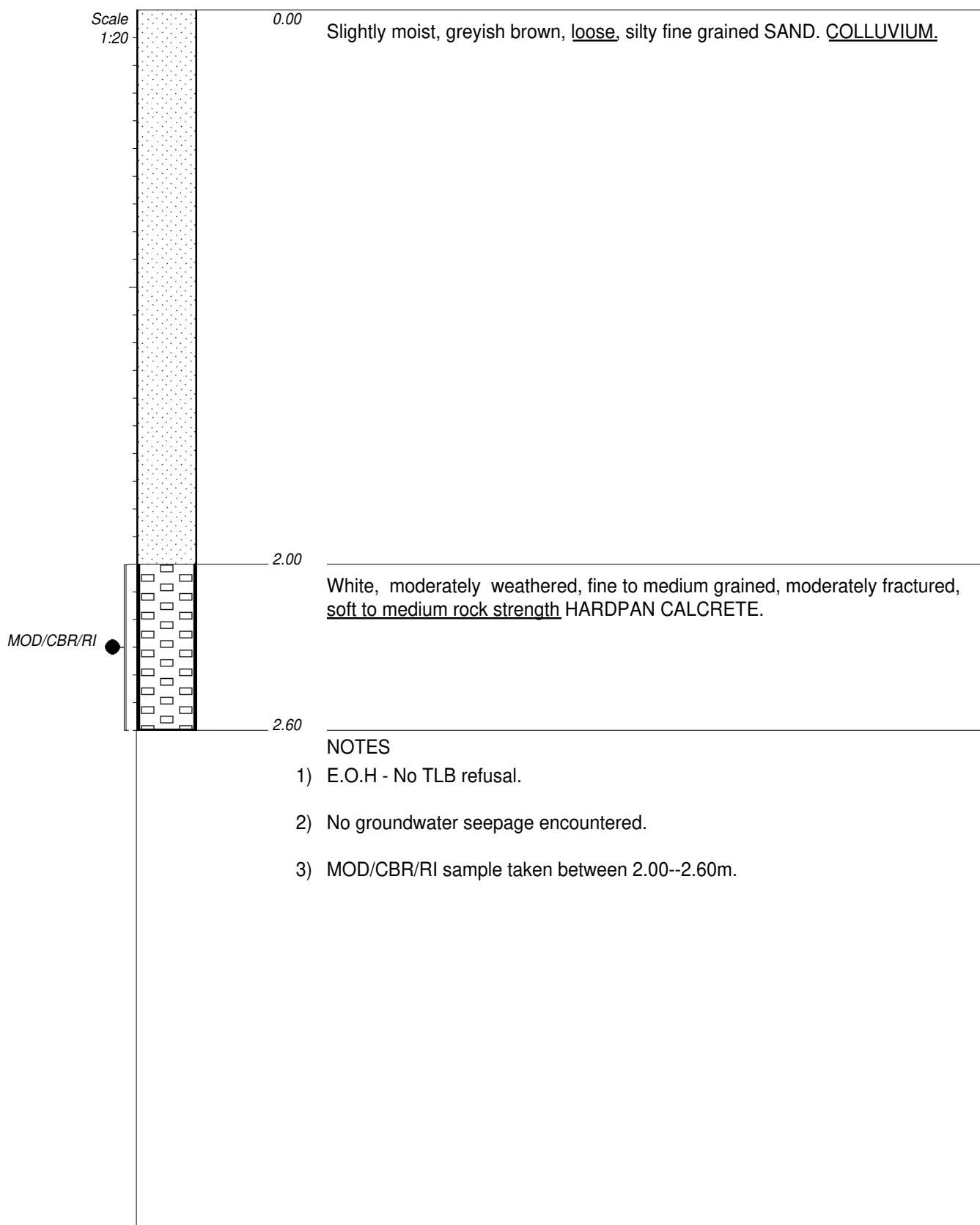
INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT


ELEVATION :  
 Lat.(X) : 34° 4'35.91"S  
 Long.(Y) : 18° 47'29.58"E  
 HOLE No: TP12



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

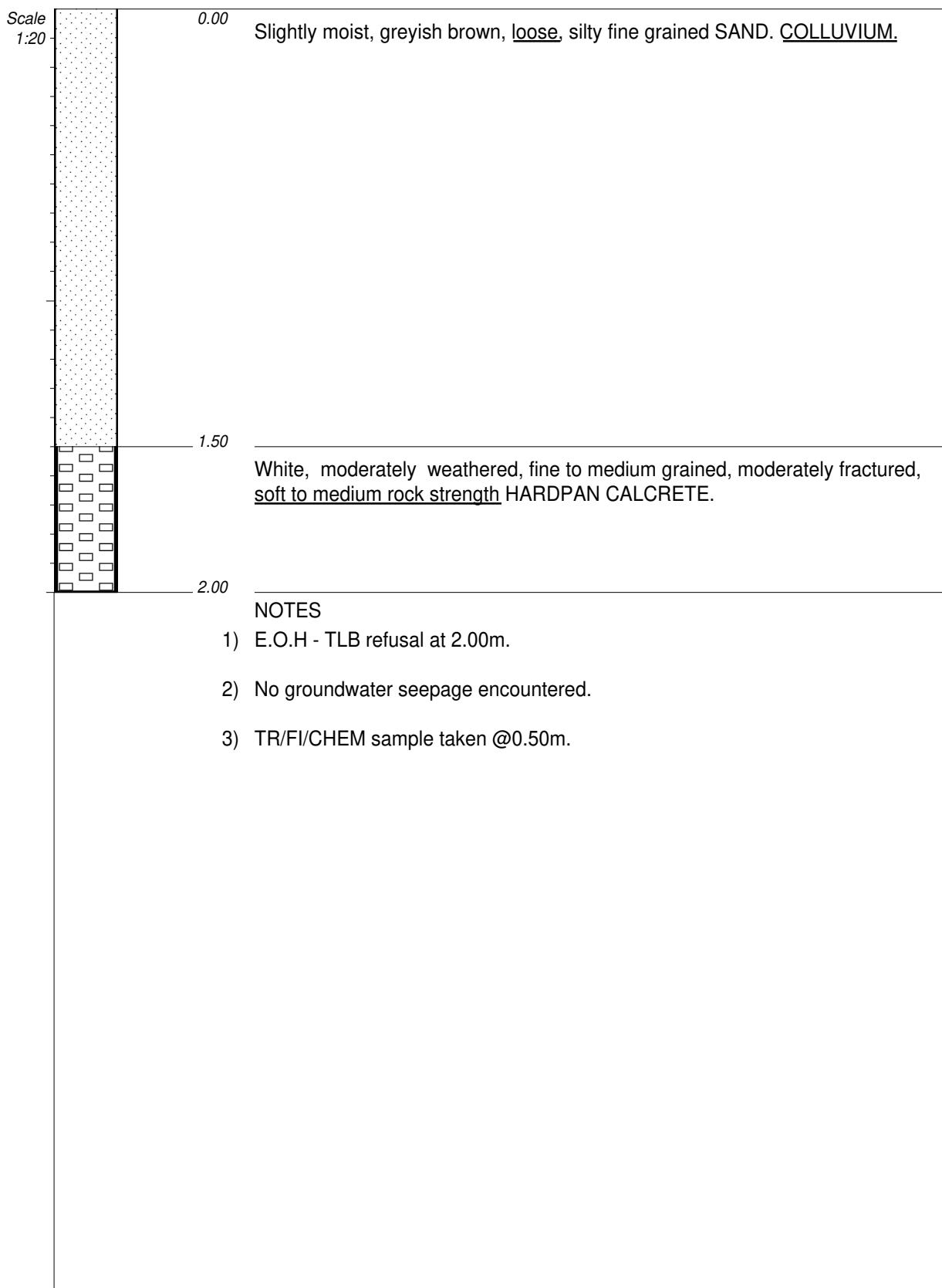

ELEVATION :  
 Lat.(X) : 34° 4'36.22"S  
 Long.(Y) : 18° 47'15.67"E  
 HOLE No: TP13



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'42.87"S  
 Long.(Y) : 18° 47'27.55"E  
 HOLE No: TP14

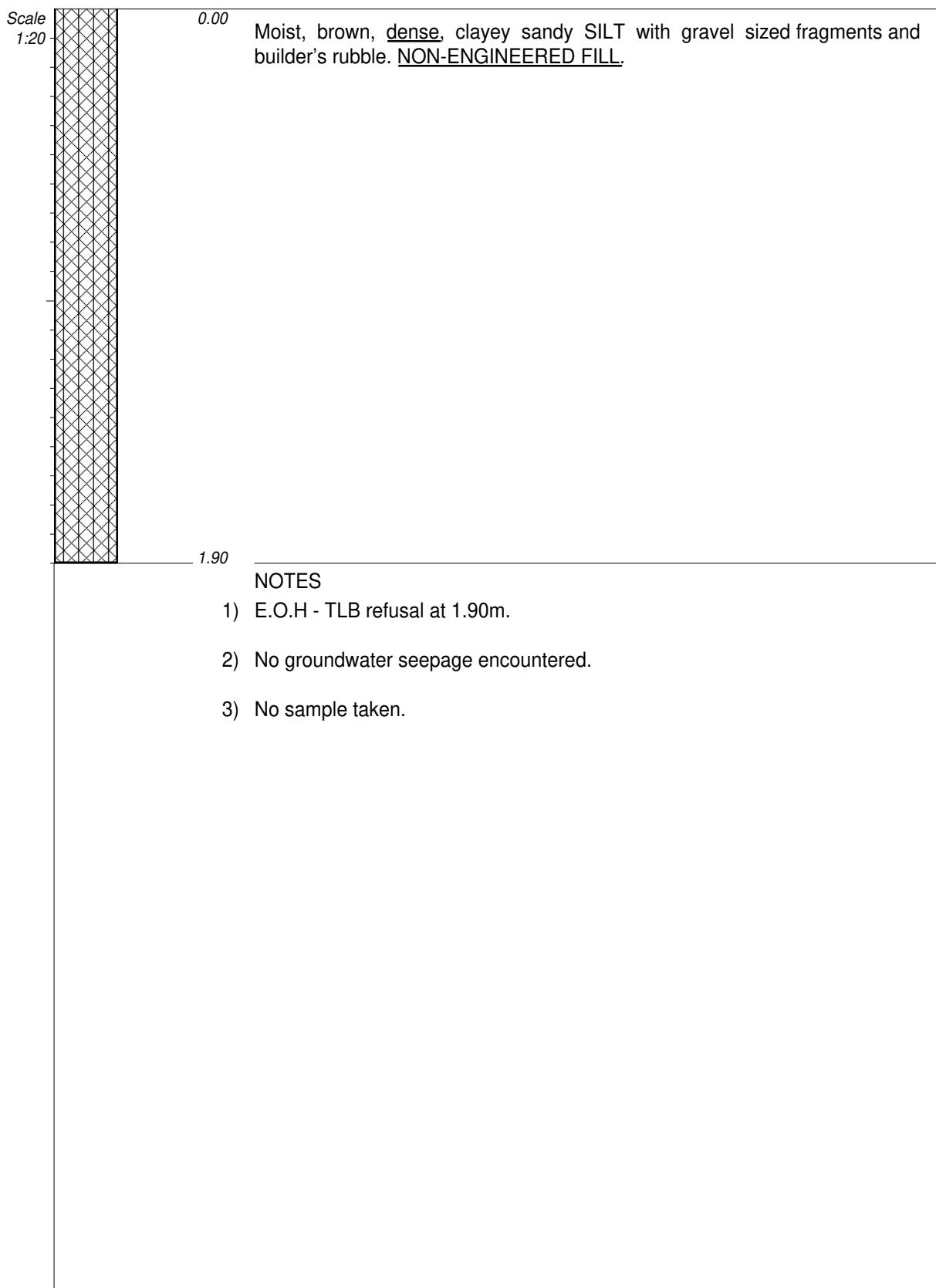



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'46.83"S  
 Long.(Y) : 18° 47'13.37"E

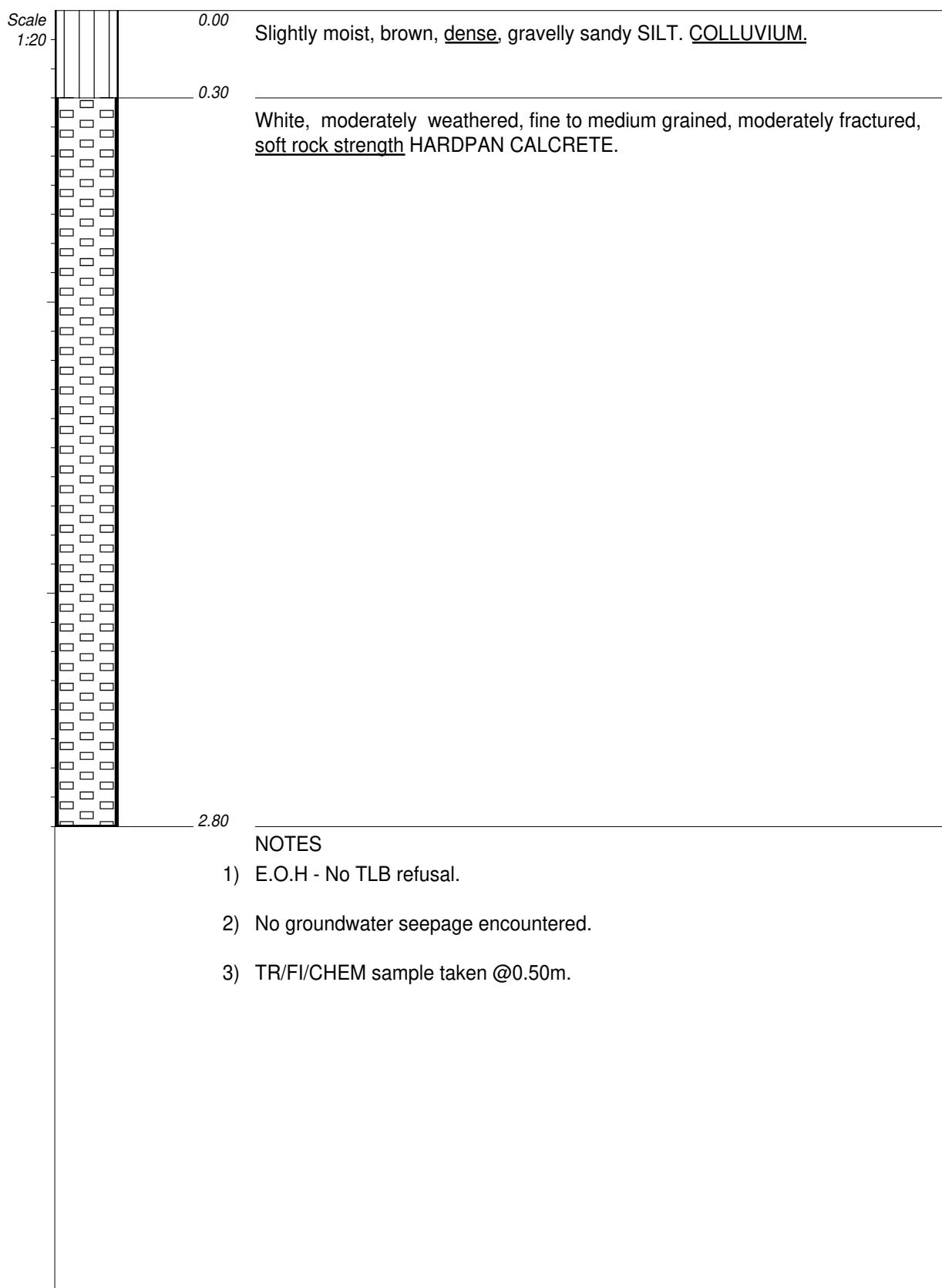
HOLE No: TP15




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'50.54"S  
 Long.(Y) : 18° 47'20.36"E

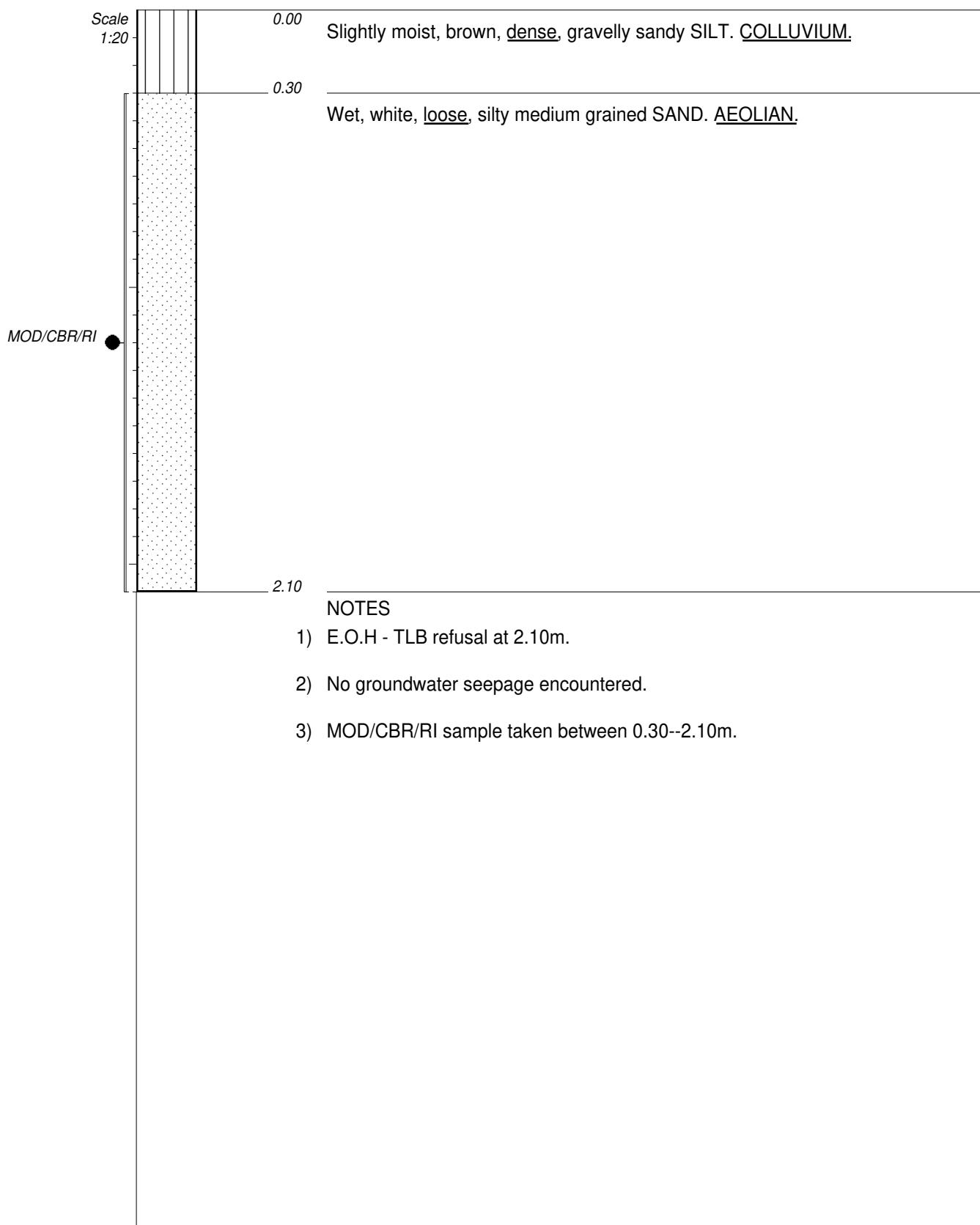

HOLE No: TP16



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'50.08"S  
 Long.(Y) : 18° 47'33.21"E  
 HOLE No: TP17

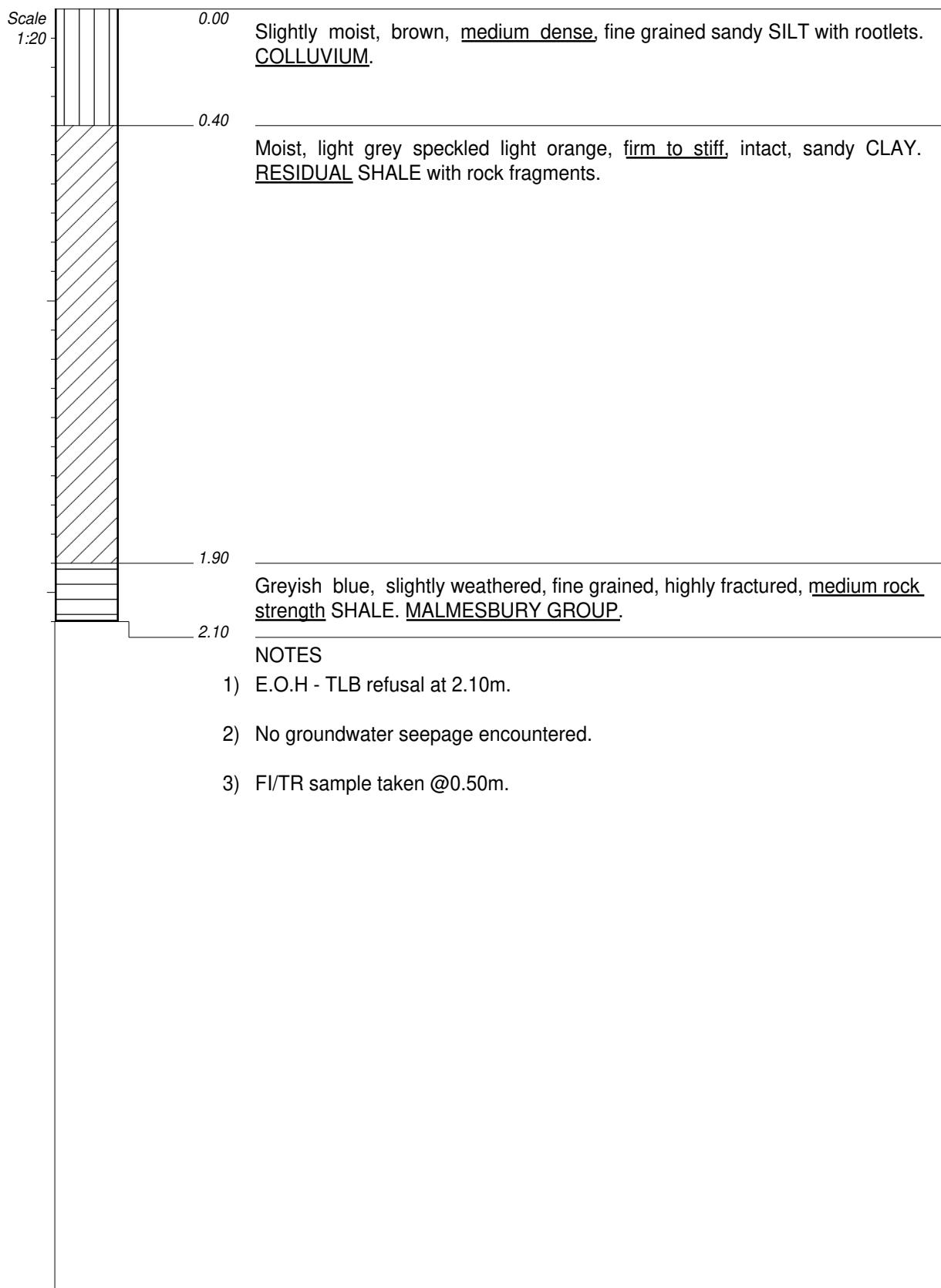



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'43.39"S  
 Long.(Y) : 18° 47'35.28"E

HOLE No: TP18




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'42.86"S  
 Long.(Y) : 18° 47'44.37"E

HOLE No: TP19

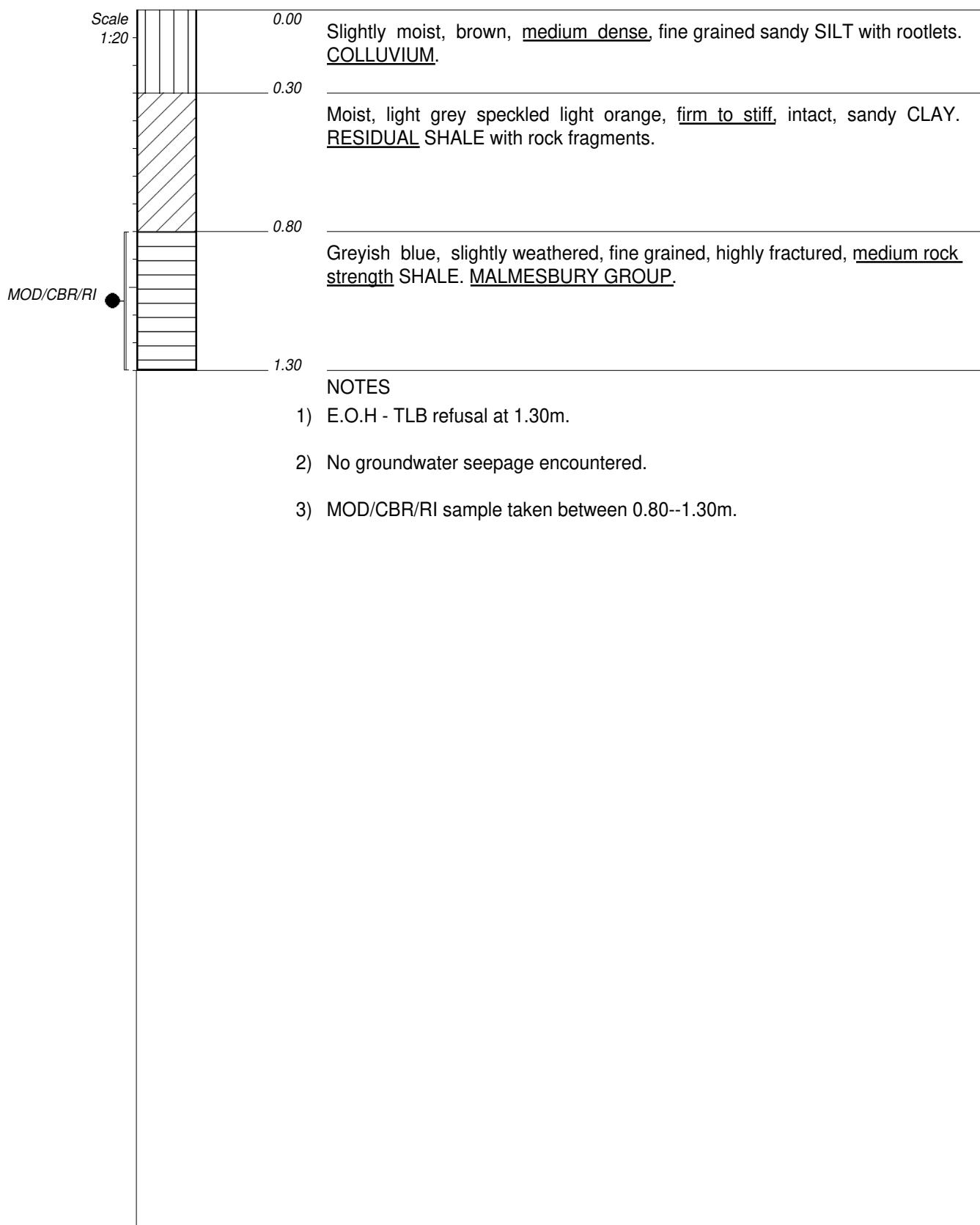



**CONTRACTOR :**  
 MACHINE : TLB  
**DRILLED BY :**  
**PROFILED BY :** T. HLONGWANE  
**TYPE SET BY :** T. HLONGWANE  
**SETUP FILE :** TP-JGA-A4.SET

**INCLINATION :**  
**DIAM :**  
**DATE :**  
**DATE :** 04/12/2023 - 06/12/2023  
**DATE :** 08/02/2024 11:54  
**TEXT :** ..AARDEVLEISOLARPVFARM.TXT

**ELEVATION :**  
 Lat.(X) : 34° 4'32.49"S  
 Long.(Y) : 18° 47'50.51"E

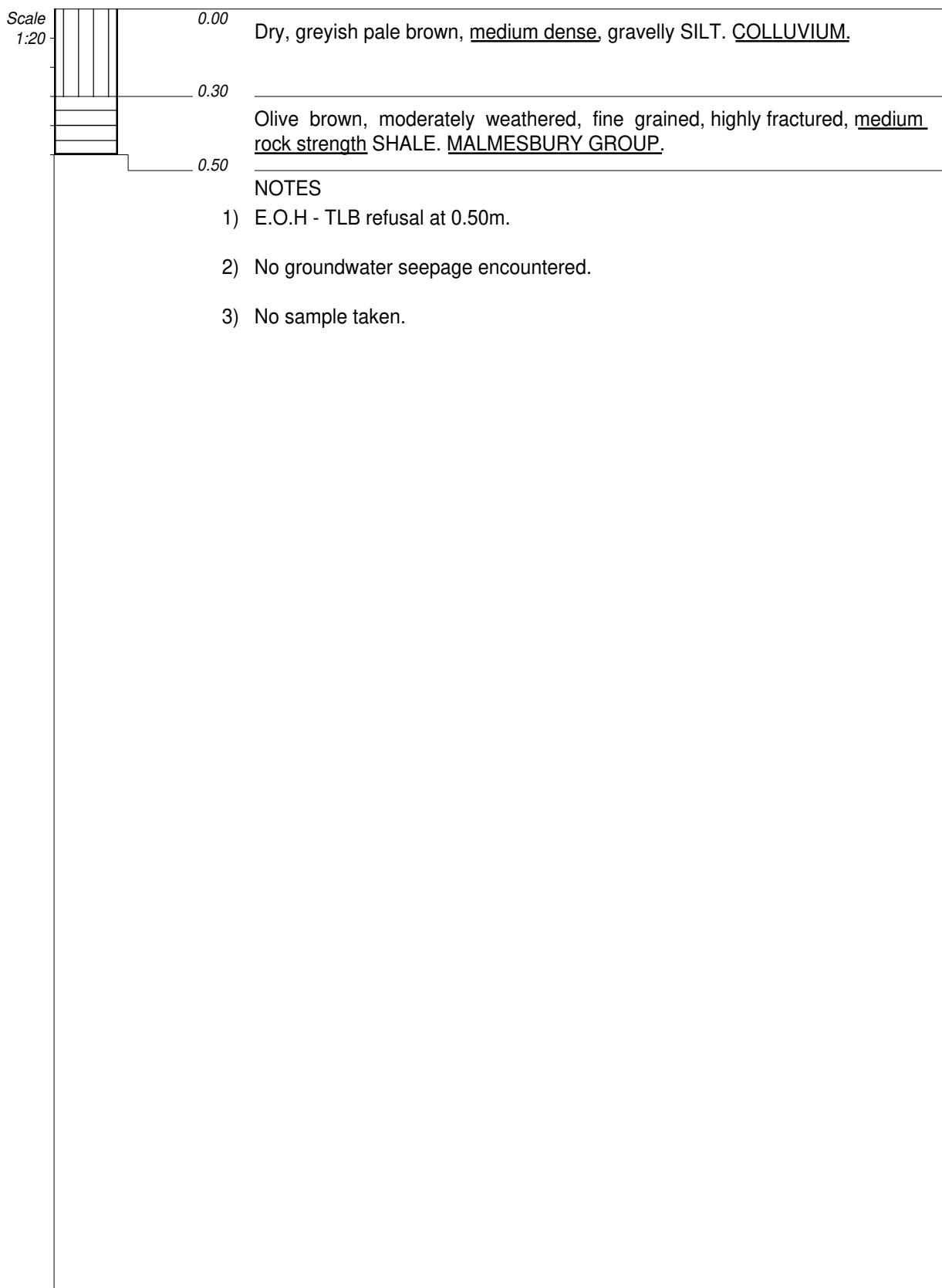
HOLE No: TP20




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

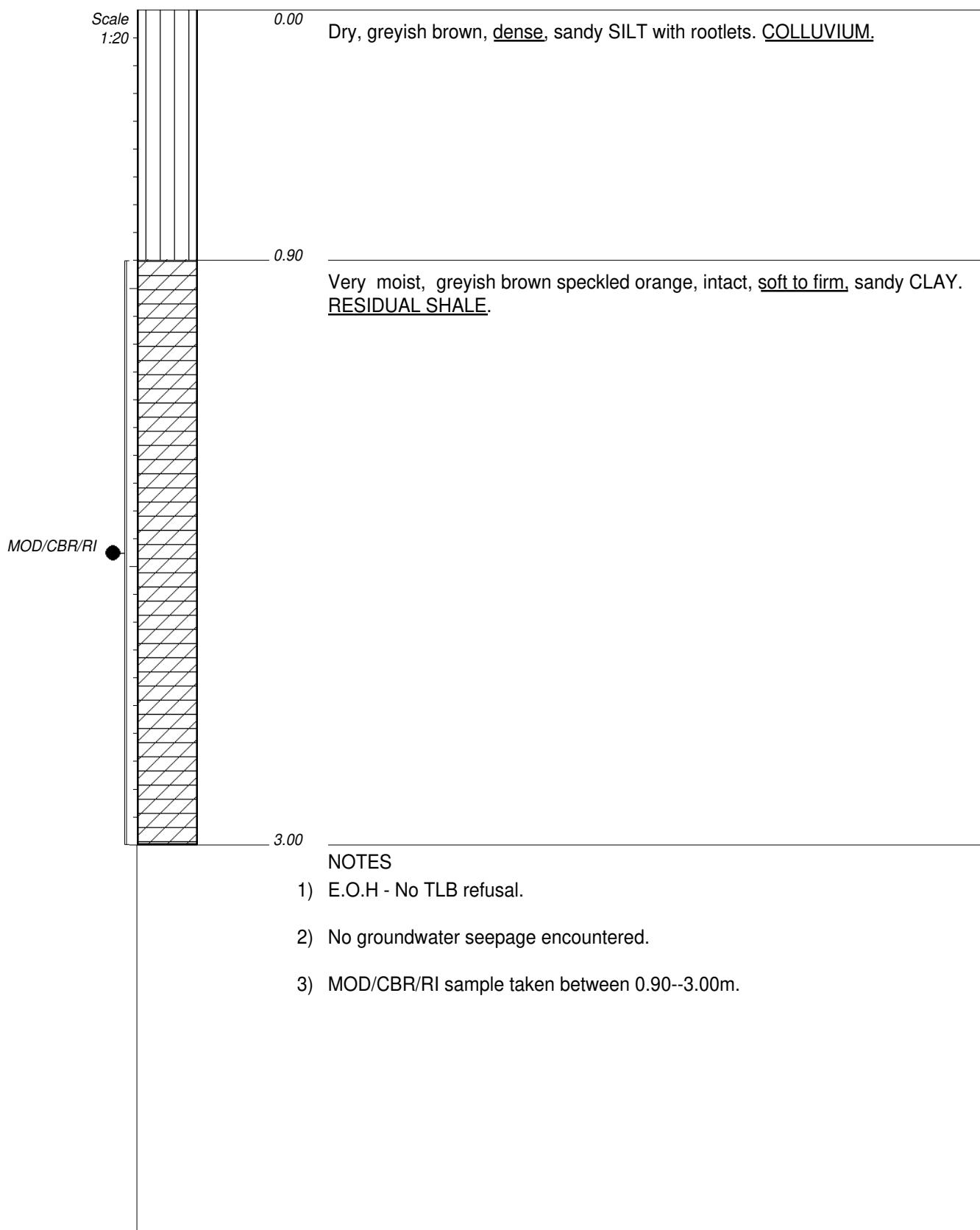
ELEVATION :  
 Lat.(X) : 34° 4'22.85"S  
 Long.(Y) : 18° 47'53.06"E


HOLE No: TP21



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

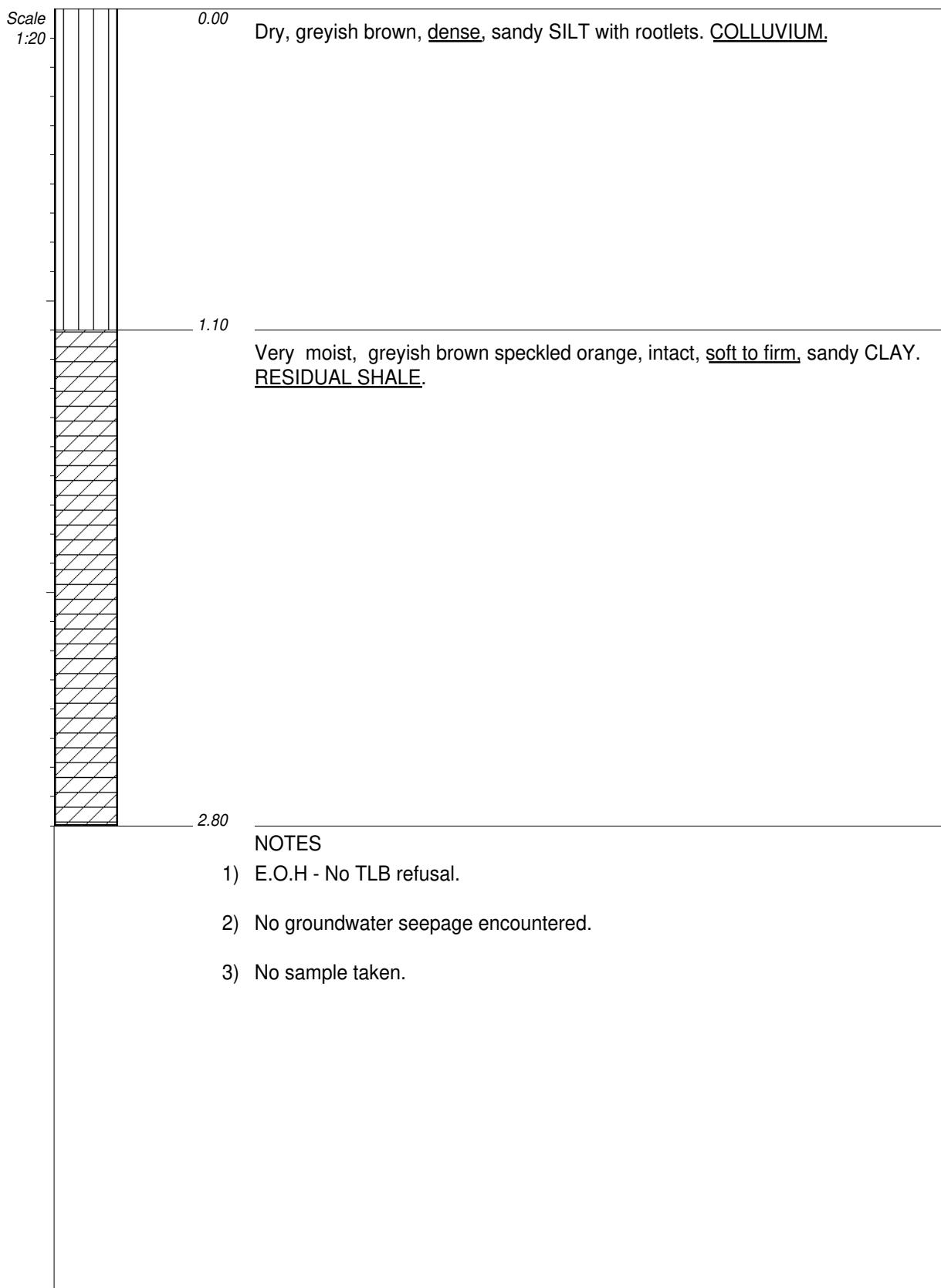

ELEVATION :  
 Lat.(X) : 34° 4'18.99"S  
 Long.(Y) : 18° 47'57.97"E  
 HOLE No: TP22



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'21.15"S  
 Long.(Y) : 18° 48'9.88"E  
 HOLE No: TP23

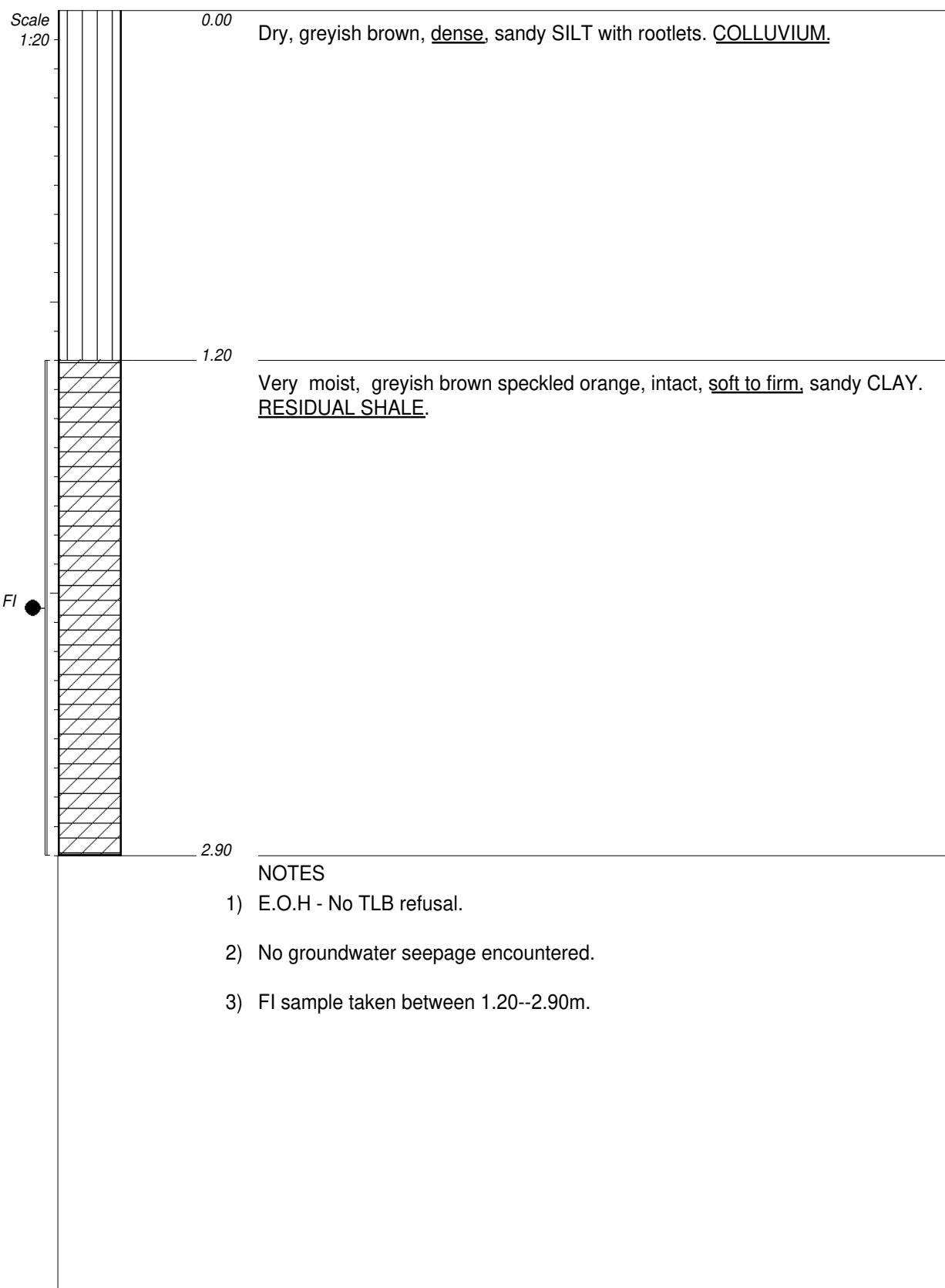



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'36.08"S  
 Long.(Y) : 18° 48'4.66"E

HOLE No: TP24

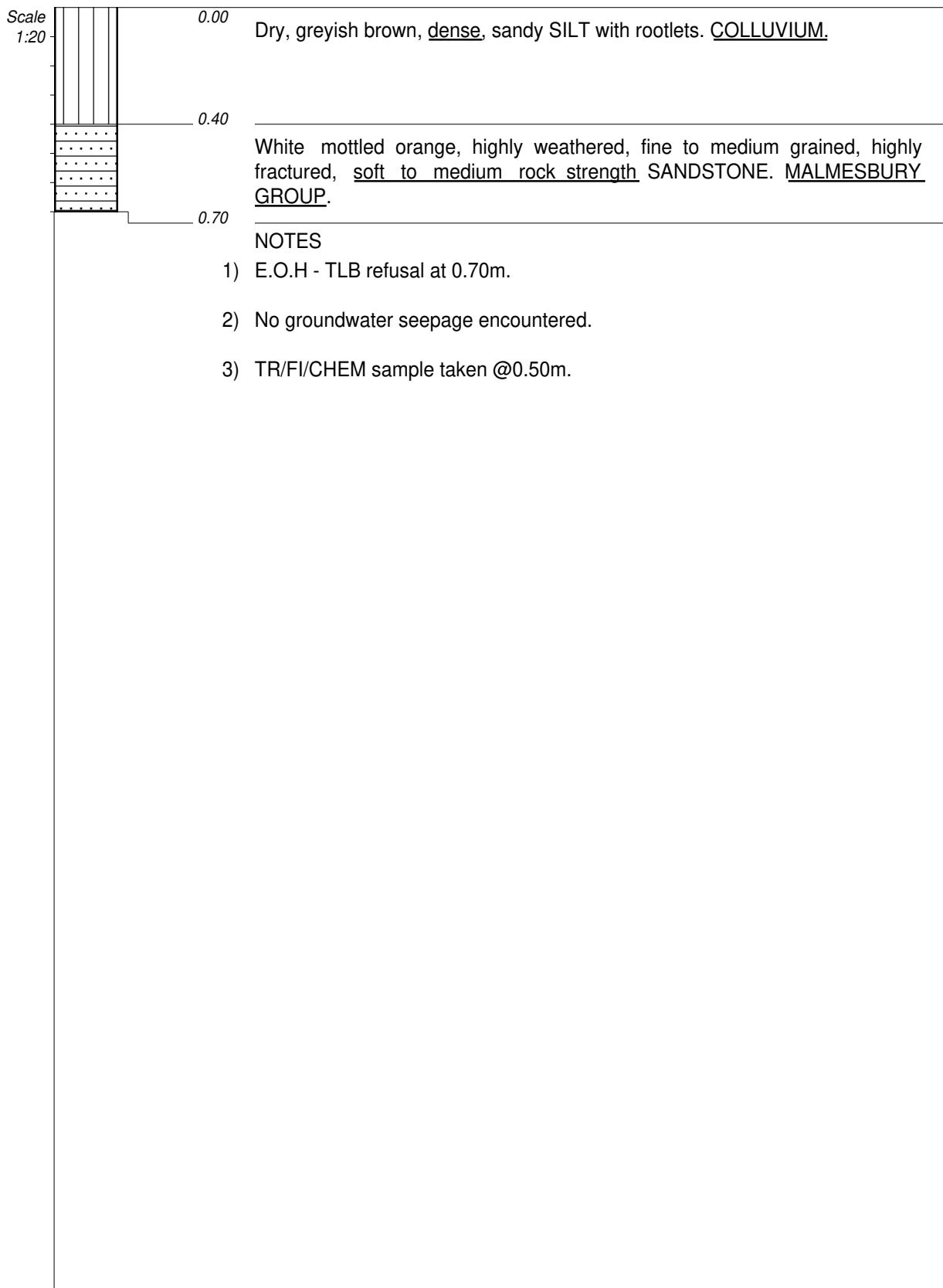



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'40.65"S  
 Long.(Y) : 18° 48'6.24"E

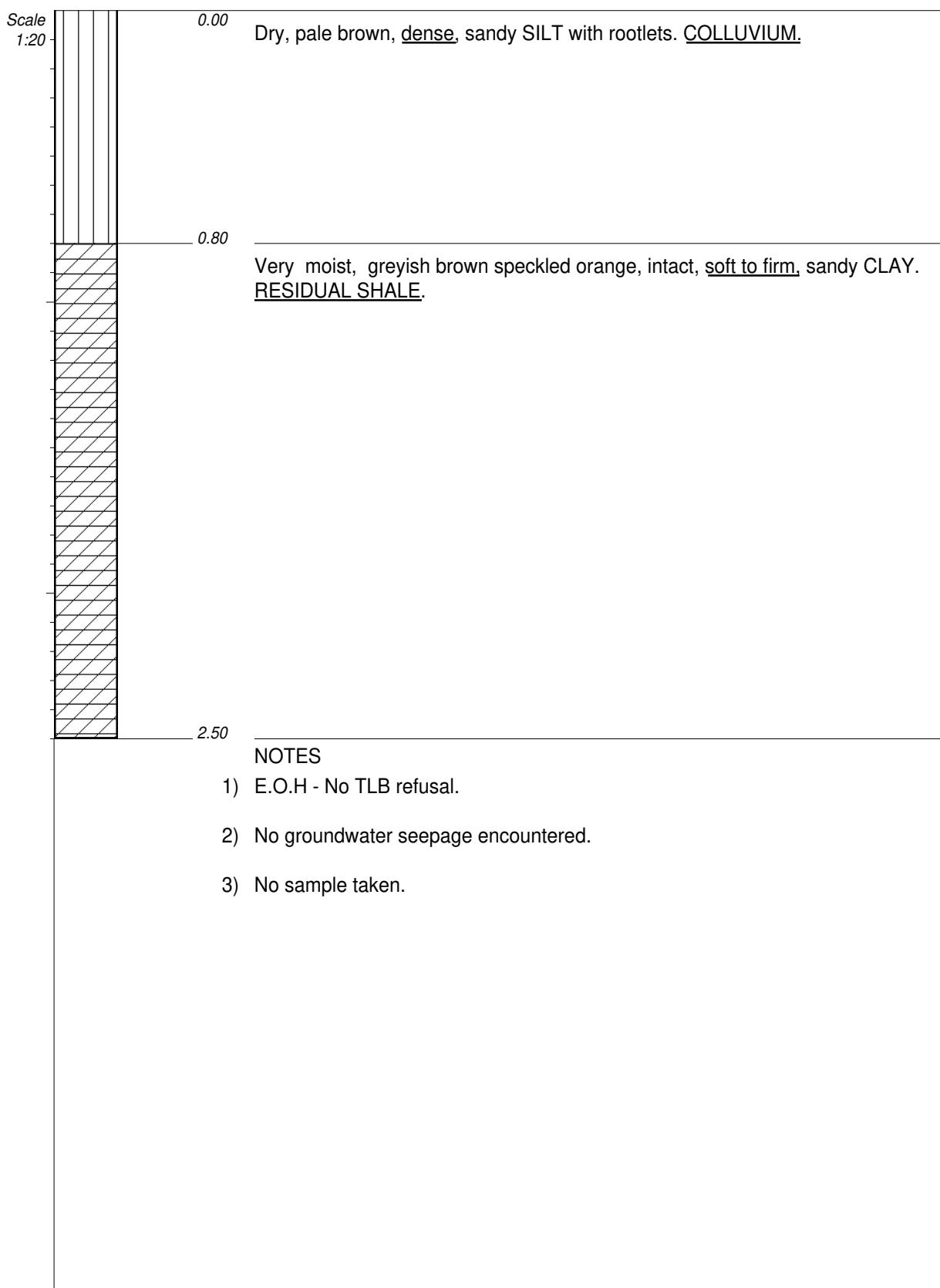
HOLE No: TP25




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

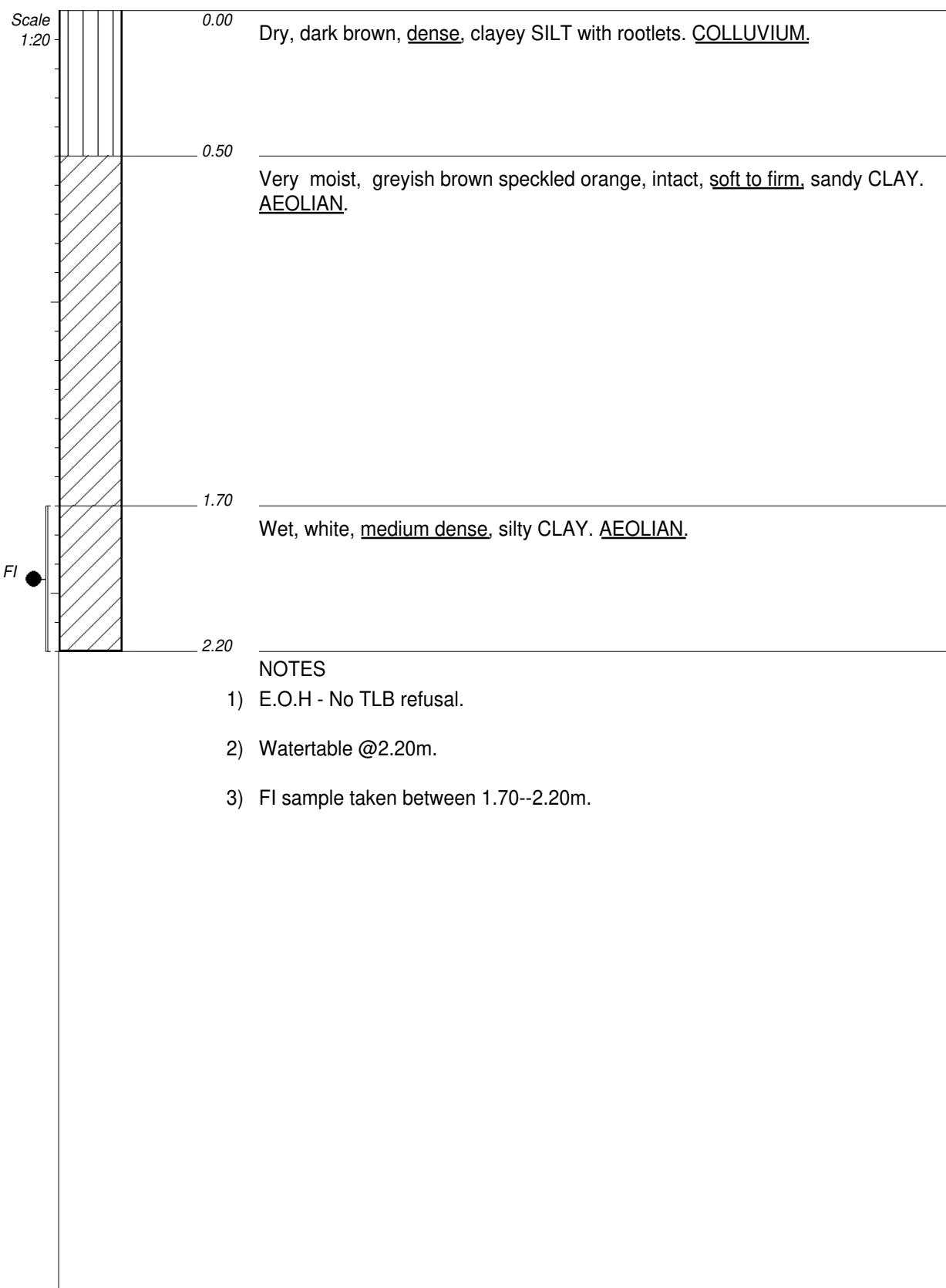
ELEVATION :  
 Lat.(X) : 34° 4'46.62"S  
 Long.(Y) : 18° 48'9.58"E


HOLE No: TP26



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

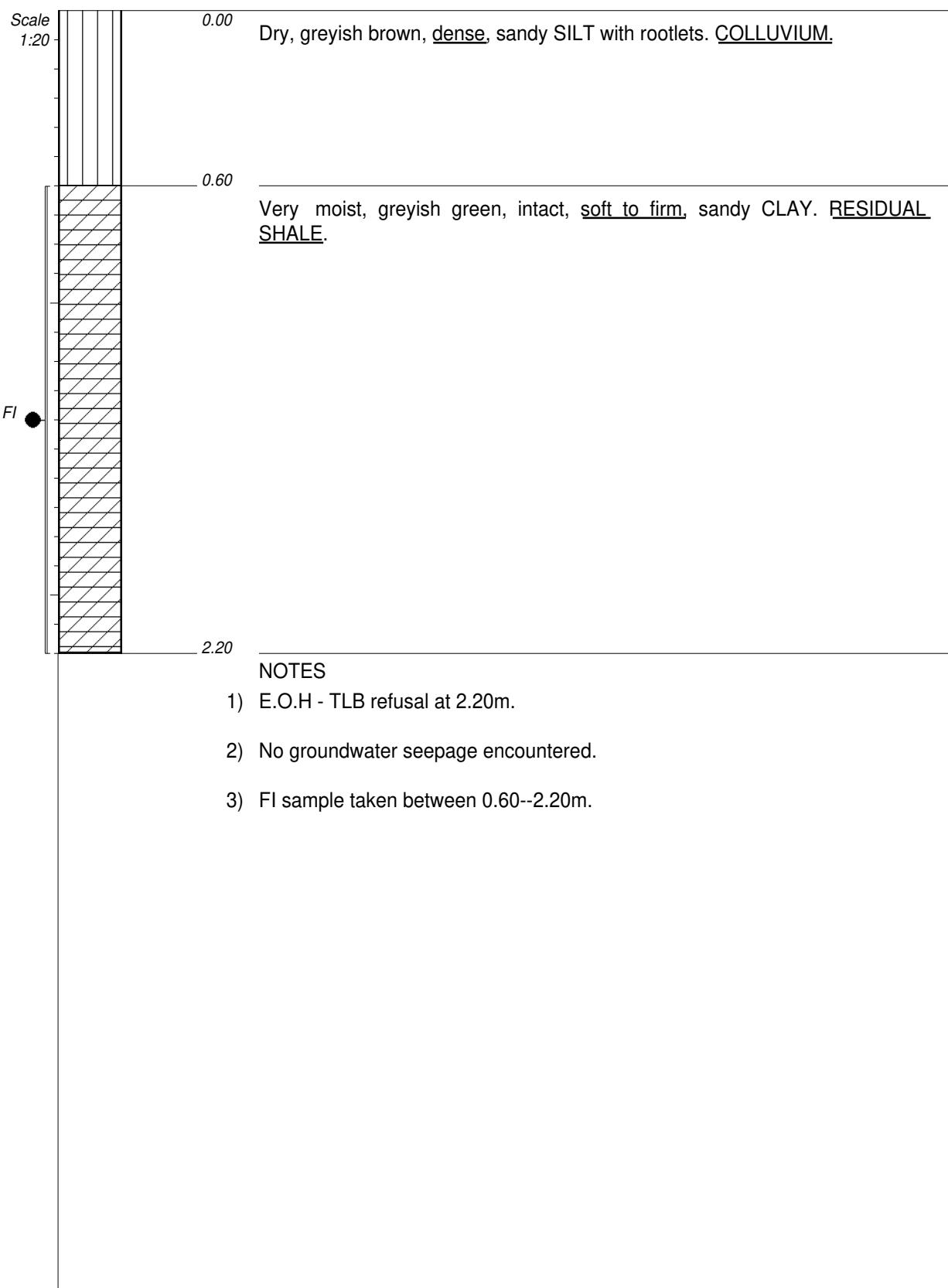

ELEVATION :  
 Lat.(X) : 34° 4'50.14"S  
 Long.(Y) : 18° 47'59.59"E  
 HOLE No: TP27



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPVFARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'47.32"S  
 Long.(Y) : 18° 47'54.03"E  
 HOLE No: TP28




CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'39.29"S  
 Long.(Y) : 18° 47'52.66"E

HOLE No: TP29



CONTRACTOR :  
 MACHINE : TLB  
 DRILLED BY :  
 PROFILED BY : T. HLONGWANE  
 TYPE SET BY : T. HLONGWANE  
 SETUP FILE : TP-JGA-A4.SET

INCLINATION :  
 DIAM :  
 DATE :  
 DATE : 04/12/2023 - 06/12/2023  
 DATE : 08/02/2024 11:54  
 TEXT : ..AARDEVLEISOLARPV FARM.TXT

ELEVATION :  
 Lat.(X) : 34° 4'37.70"S  
 Long.(Y) : 18° 47'57.61"E  
 HOLE No: TP30

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 1: Trial pit 1**



**Plate 2: Trial pit 2**



**Plate 3: Trial pit 3**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 4: Trial pit 4**



**Plate 5: Trial pit 5**



**Plate 6: Trial pit 7**

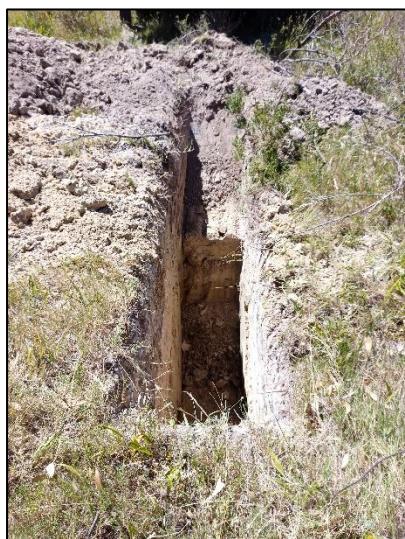
**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 7: Trial pit 8**



**Plate 8: Trial pit 9**




**Plate 9: Trial pit 10**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 10: Trial pit 11**



**Plate 11: Trial pit 12**



**Plate 12: Calcrete spoil material from trial pit TP13**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 13: Trial pit 14**



**Plate 14: Hardpan calcrete from trial pit TP15**

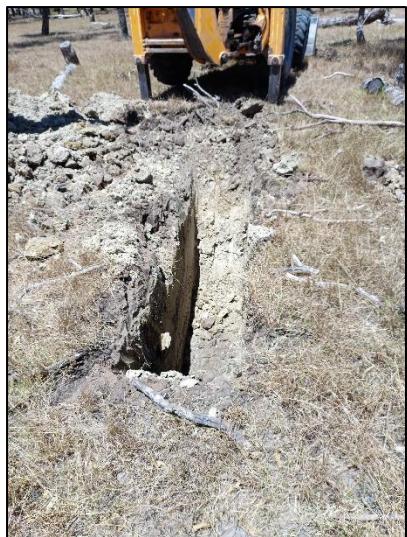


**Plate 15: Trial pit 16**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 16: Trial pit 17**




**Plate 17: Hardpan calcrete from trial pit TP18**



**Plate 18: Trial pit 19**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 19: Trial pit 20**



**Plate 20: Excavation spoil material from trial pit 21**



**Plate 21: Trial pit 22**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 22: Trial pit 23**



**Plate 23: Trial pit 24**



**Plate 24: Trial pit 25**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 25: Excavation spoil from trial pit TP26**



**Plate 26: Trial pit 27**



**Plate 27: Trial pit 28**

**6047 – PAARDEVLEI SOLAR PHOTO-VALTAIC FARM**



**Plate 28: Trial pit 29**

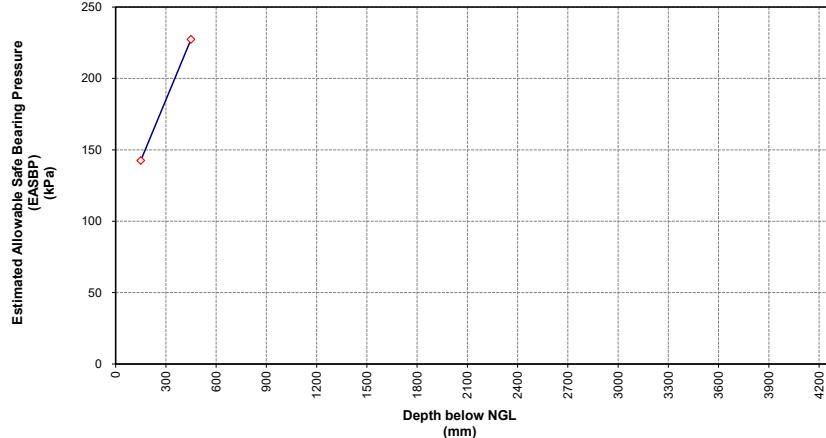


**Plate 29: Trial pit 30**

## *Appendix C: DPL Tests*

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 1 Location: TP1


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

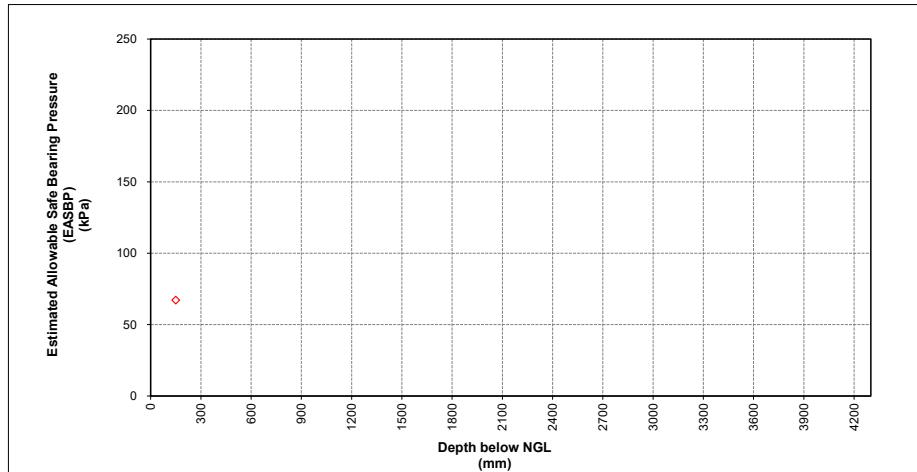
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DCP penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 26               | Non-Cohesive | 150                  | 12                        | 10                     | 19                     | 143                         |                    |
| 2                | 300                | 600                    | 450                      | 44               | Non-Cohesive | 450                  | 7                         | 17                     | 38                     | 227                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 2 Location: TP2


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

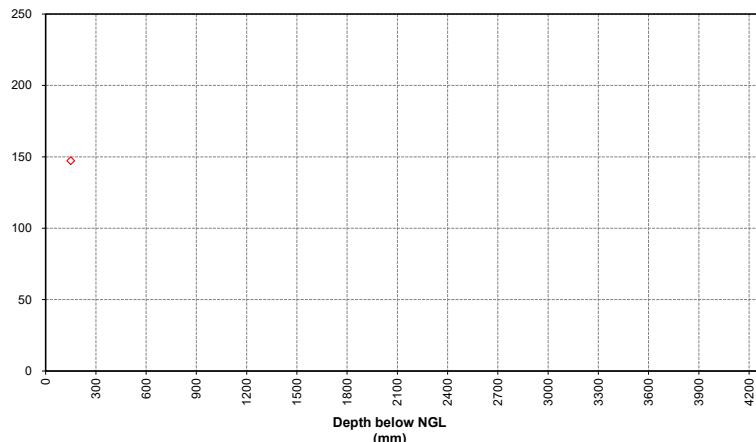
NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 10               | Non-Cohesive | 150                  | 30                        | 4                      | 5                      | 67                          | 67                 |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP


Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 3 Location: TP3

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"  
 note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.  
 EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.

Estimated Allowable Safe Bearing Pressure (EASBP) (kPa)



| Penetration Guide: Consistency |                |                    |
|--------------------------------|----------------|--------------------|
| SPT N Value                    | Cohesive soils | Non-cohesive soils |
| > 50                           | Very stiff     | Very Dense         |
| 31 - 50                        | Stiff          | Dense              |
| 11 - 30                        | Firm           | Med Dense          |
| 5 - 10                         | Soft           | Loose              |
| 0 - 4                          | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

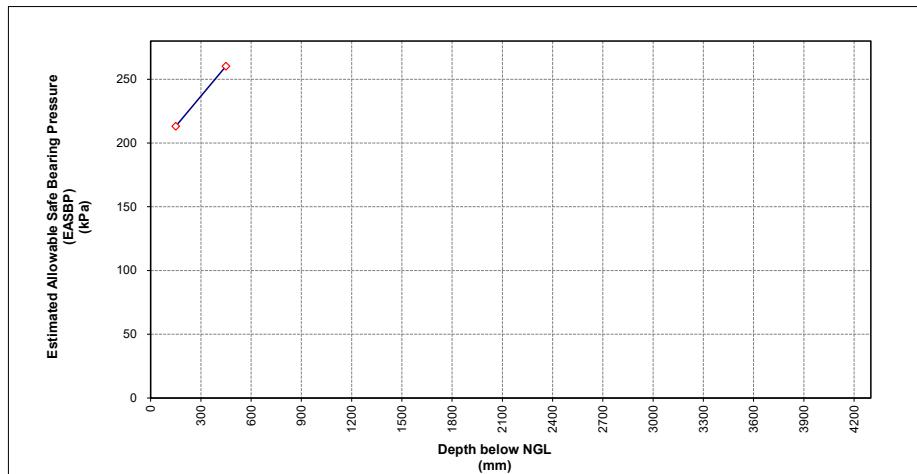
Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR  | Cohesive soils |              |
|------------------|--------------------|------------------------|-----|----------------|--------------|
|                  | 1                  | times Terzaghi's value |     | Nc             | 5            |
| 1                | 0                  | 300                    | 150 | 27             | Non-Cohesive |

| Reading no. | Layer from (mm) | Layer to (mm) | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
|-------------|-----------------|---------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
| 1           | 0               | 300           | 150                      | 27               | Non-Cohesive | 150                  | 11                        | 10                     | 20                     | 147                         | 147                |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 4 Location: TP4


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

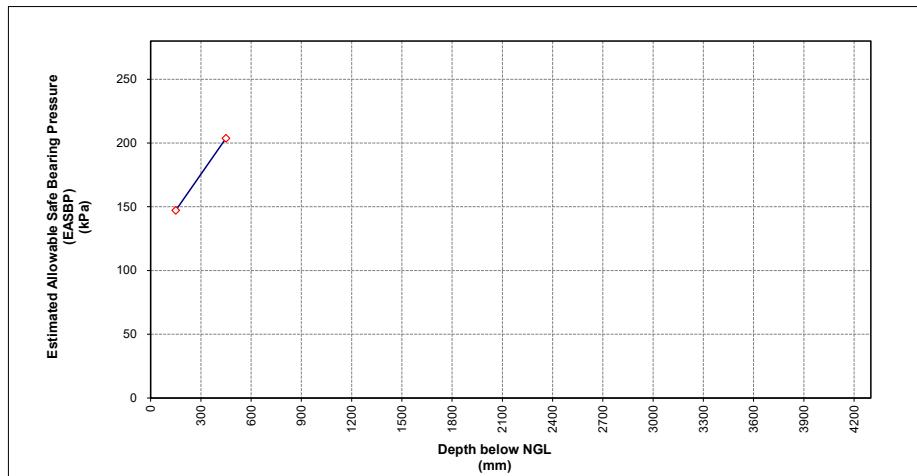
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 41               | Non-Cohesive | 150                  | 7                         | 16                     | 34                     | 213                         | 260                |
| 2                | 300                | 600                    | 450                      | 51               | Non-Cohesive | 450                  | 6                         | 19                     | 46                     |                             |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 5 Location: TP5


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

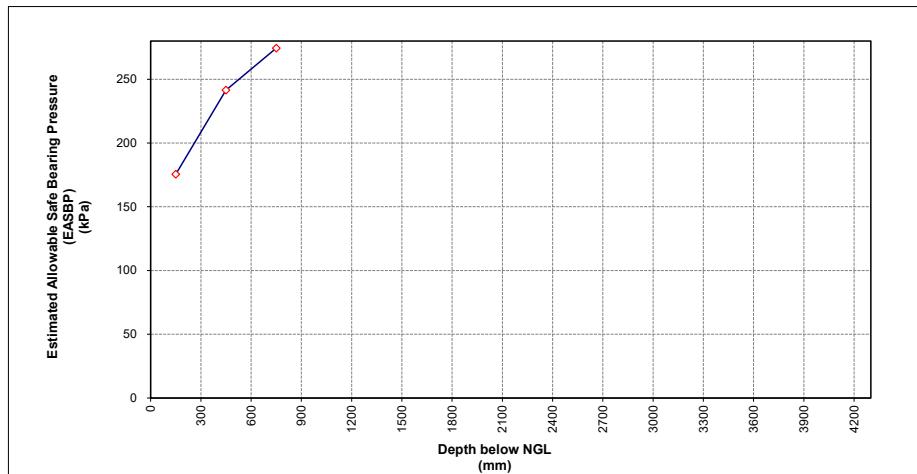
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 27               | Non-Cohesive | 150                  | 11                        | 10                     | 20                     | 147                         |                    |
| 2                | 300                | 600                    | 450                      | 39               | Non-Cohesive | 450                  | 8                         | 15                     | 32                     | 204                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 7 Location: TP7


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

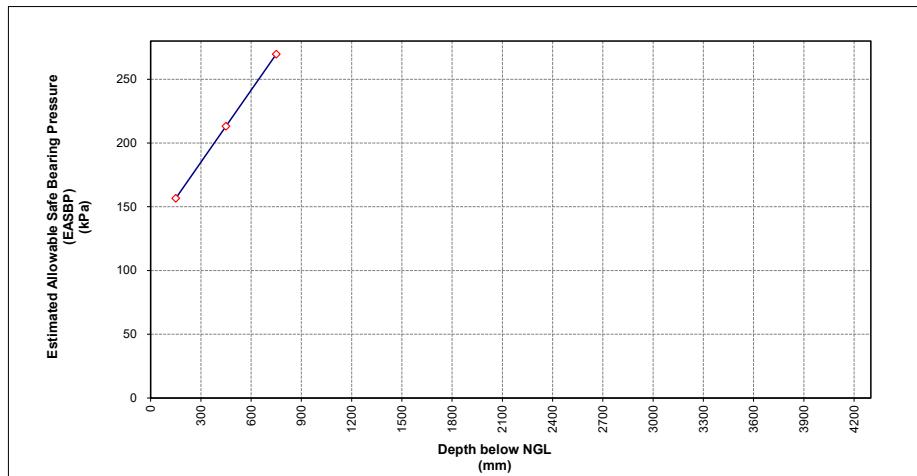
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Nc               | Cohesive soils |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|----------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          |                  | 5              | FOS                  |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type      | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 33               | Non-Cohesive   | 150                  | 9                         | 13                     | 26                     | 175                         |                    |
| 2                | 300                | 600                    | 450                      | 47               | Non-Cohesive   | 450                  | 6                         | 18                     | 41                     | 241                         |                    |
| 3                | 600                | 900                    | 750                      | 54               | Non-Cohesive   | 750                  | 6                         | 21                     | 49                     | 274                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 8 Location: TP8


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

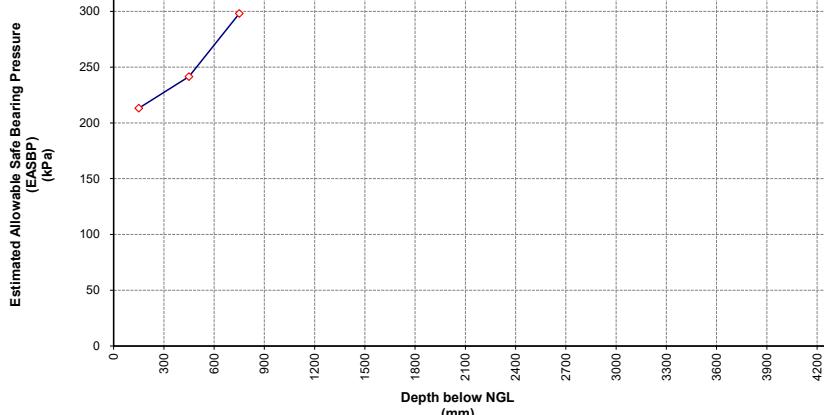
Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |                             |
|------------------|--------------------|------------------------|--------------------------|------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 29               | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 41               | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 53               | Non-Cohesive                |
|                  |                    |                        |                          |                  | Depth below NGL (mm)        |
|                  |                    |                        |                          |                  | DPL penetration (mm/blow)   |
|                  |                    |                        |                          |                  | Equivalent SPT N value      |
|                  |                    |                        |                          |                  | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                  | Approx shear strength (kPa) |
|                  |                    |                        |                          |                  | Approx EASBP (kPa)          |

157  
 213  
 270

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 9 Location: TP9


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



| Penetration Guide: Consistency |                |                    |
|--------------------------------|----------------|--------------------|
| SPT N Value                    | Cohesive soils | Non-cohesive soils |
| > 50                           | Very stiff     | Very Dense         |
| 31 - 50                        | Stiff          | Dense              |
| 11 - 30                        | Firm           | Med Dense          |
| 5 - 10                         | Soft           | Loose              |
| 0 - 4                          | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

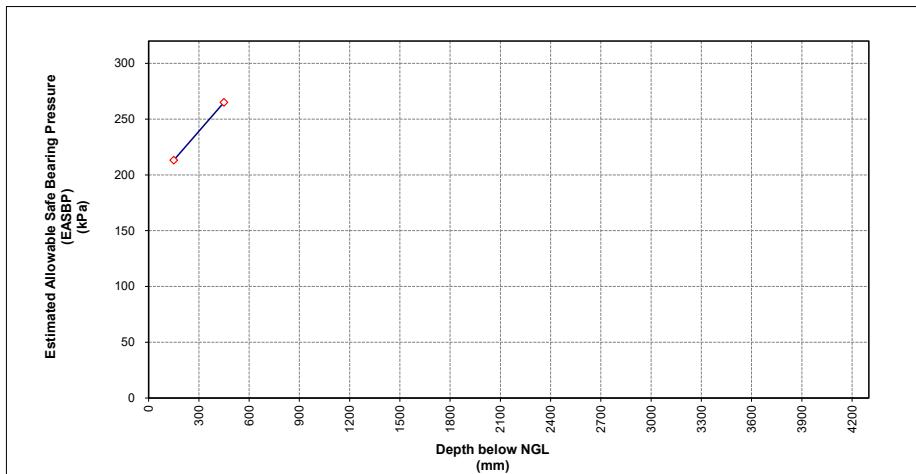
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils            |                             |
|------------------|--------------------|------------------------|--------------------------|---------------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc                        | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm          | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 41                        | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 47                        | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 59                        | Non-Cohesive                |
|                  |                    |                        |                          | DPL penetration (mm/blow) | Equivalent SPT N value      |
|                  |                    |                        |                          | 150                       | 7                           |
|                  |                    |                        |                          | 450                       | 6                           |
|                  |                    |                        |                          | 750                       | 5                           |
|                  |                    |                        |                          |                           | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                           | 16                          |
|                  |                    |                        |                          |                           | 34                          |
|                  |                    |                        |                          |                           | 18                          |
|                  |                    |                        |                          |                           | 41                          |
|                  |                    |                        |                          |                           | 22                          |
|                  |                    |                        |                          |                           | 55                          |
|                  |                    |                        |                          |                           | Approx shear strength (kPa) |
|                  |                    |                        |                          |                           | 213                         |
|                  |                    |                        |                          |                           | 241                         |
|                  |                    |                        |                          |                           | 298                         |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 10 Location: TP10


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

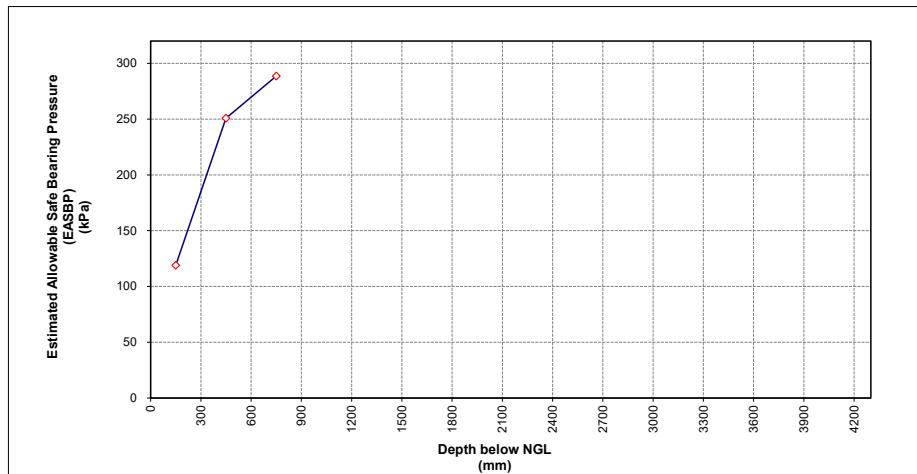
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DCP penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 41               | Non-Cohesive | 150                  | 7                         | 16                     | 34                     | 213                         | 265                |
| 2                | 300                | 600                    | 450                      | 52               | Non-Cohesive | 450                  | 6                         | 20                     | 47                     |                             |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 11 Location: TP11


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

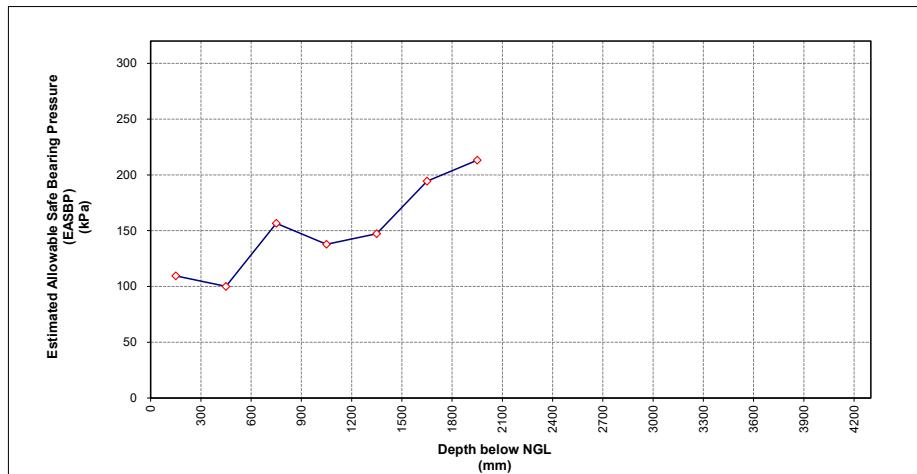
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 21               | Non-Cohesive | 150                  | 14                        | 8                      | 14                     | 119                         |                    |
| 2                | 300                | 600                    | 450                      | 49               | Non-Cohesive | 450                  | 6                         | 19                     | 43                     | 251                         |                    |
| 3                | 600                | 900                    | 750                      | 57               | Non-Cohesive | 750                  | 5                         | 22                     | 53                     | 289                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 12 Location: TP12


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

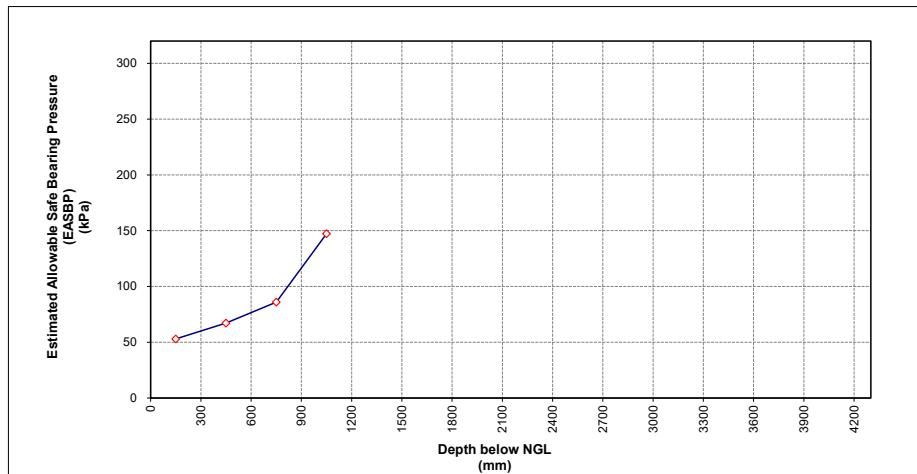
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 2.10m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 19               | Non-Cohesive | 150                  | 16                        | 7                      | 13                     | 110                         | 110                |
| 2                | 300                | 600                    | 450                      | 17               | Non-Cohesive | 450                  | 18                        | 6                      | 11                     | 100                         | 100                |
| 3                | 600                | 900                    | 750                      | 29               | Non-Cohesive | 750                  | 10                        | 11                     | 22                     | 157                         | 157                |
| 4                | 900                | 1200                   | 1050                     | 25               | Non-Cohesive | 1050                 | 12                        | 10                     | 18                     | 138                         | 138                |
| 5                | 1200               | 1500                   | 1350                     | 27               | Non-Cohesive | 1350                 | 11                        | 10                     | 20                     | 147                         | 147                |
| 6                | 1500               | 1800                   | 1650                     | 37               | Non-Cohesive | 1650                 | 8                         | 14                     | 30                     | 194                         | 194                |
| 7                | 1800               | 2100                   | 1950                     | 41               | Non-Cohesive | 1950                 | 7                         | 16                     | 34                     | 213                         | 213                |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 13 Location: TP13


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

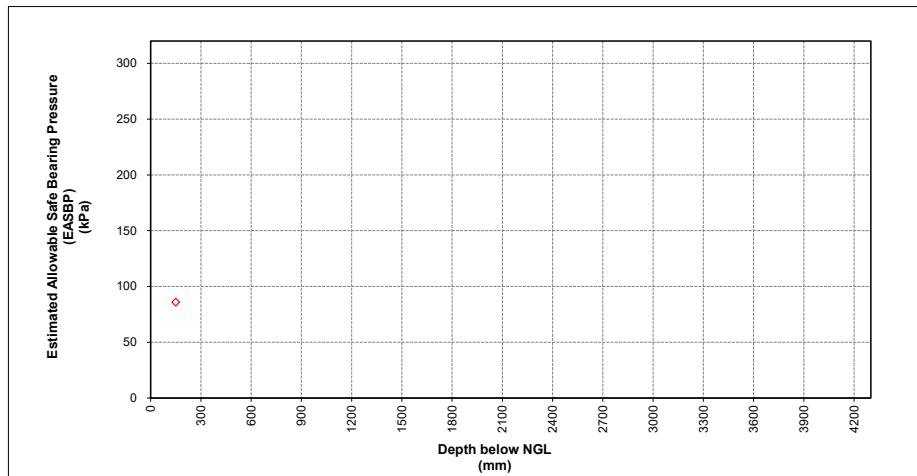
Remarks : Refusal at 1.20m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |                             |
|------------------|--------------------|------------------------|--------------------------|------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 7                | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 10               | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 14               | Non-Cohesive                |
| 4                | 900                | 1200                   | 1050                     | 27               | Non-Cohesive                |
|                  |                    |                        |                          |                  | DPL penetration (mm/blow)   |
|                  |                    |                        |                          |                  | Equivalent SPT N value      |
|                  |                    |                        |                          |                  | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                  | Approx shear strength (kPa) |
|                  |                    |                        |                          |                  | Approx EASBP (kPa)          |

|   |     |      |      |    |              |      |    |    |    |     |
|---|-----|------|------|----|--------------|------|----|----|----|-----|
| 1 | 0   | 300  | 150  | 7  | Non-Cohesive | 150  | 43 | 3  | 3  | 53  |
| 2 | 300 | 600  | 450  | 10 | Non-Cohesive | 450  | 30 | 4  | 5  | 67  |
| 3 | 600 | 900  | 750  | 14 | Non-Cohesive | 750  | 21 | 5  | 8  | 86  |
| 4 | 900 | 1200 | 1050 | 27 | Non-Cohesive | 1050 | 11 | 10 | 20 | 147 |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 14 Location: TP14


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

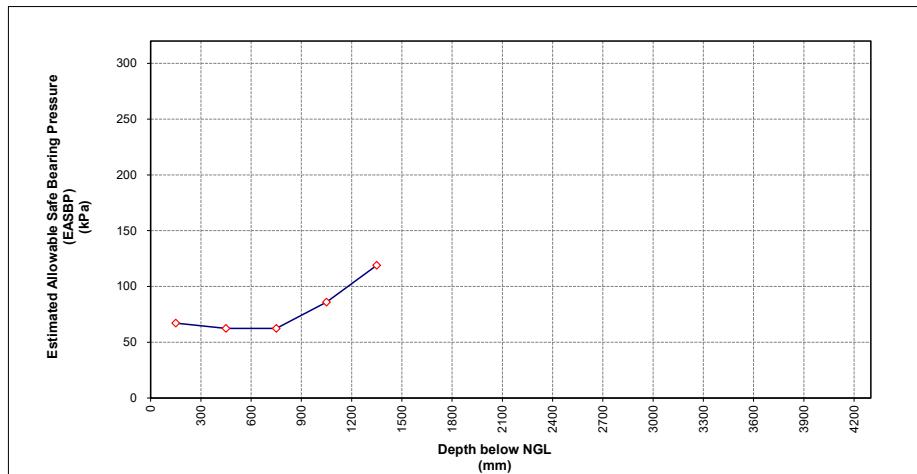
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 14               | Non-Cohesive | 150                  | 21                        | 5                      | 8                      | 86                          |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 15 Location: TP15


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

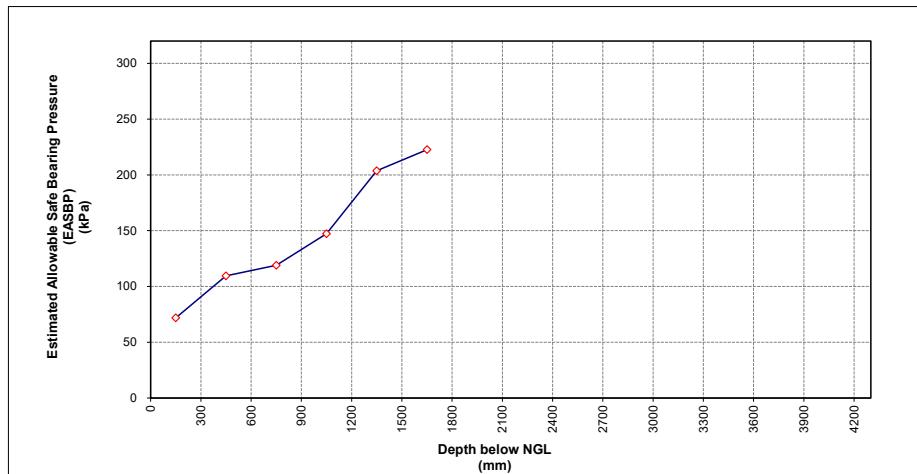
$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 1.50m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            | FOS                  |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 10               | Non-Cohesive | 150                  | 30                        | 4                      | 5                      | 67                          |                    |
| 2                | 300                | 600                    | 450                      | 9                | Non-Cohesive | 450                  | 33                        | 3                      | 5                      | 62                          |                    |
| 3                | 600                | 900                    | 750                      | 9                | Non-Cohesive | 750                  | 33                        | 3                      | 5                      | 62                          |                    |
| 4                | 900                | 1200                   | 1050                     | 14               | Non-Cohesive | 1050                 | 21                        | 5                      | 8                      | 86                          |                    |
| 5                | 1200               | 1500                   | 1350                     | 21               | Non-Cohesive | 1350                 | 14                        | 8                      | 14                     | 119                         |                    |


## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 16 Location: TP16

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"  
 note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.  
 EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



| Penetration Guide: Consistency |                |                    |
|--------------------------------|----------------|--------------------|
| SPT N Value                    | Cohesive soils | Non-cohesive soils |
| > 50                           | Very stiff     | Very Dense         |
| 31 - 50                        | Stiff          | Dense              |
| 11 - 30                        | Firm           | Med Dense          |
| 5 - 10                         | Soft           | Loose              |
| 0 - 4                          | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

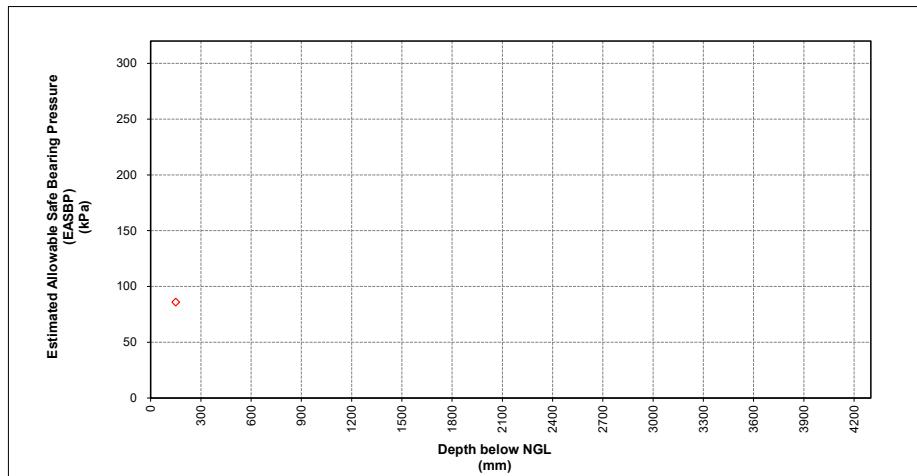
Remarks : Refusal at 1.80m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |                             |
|------------------|--------------------|------------------------|--------------------------|------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 11               | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 19               | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 21               | Non-Cohesive                |
| 4                | 900                | 1200                   | 1050                     | 27               | Non-Cohesive                |
| 5                | 1200               | 1500                   | 1350                     | 39               | Non-Cohesive                |
| 6                | 1500               | 1800                   | 1650                     | 43               | Non-Cohesive                |
|                  |                    |                        |                          |                  | Depth below NGL (mm)        |
|                  |                    |                        |                          |                  | DPL penetration (mm/blow)   |
|                  |                    |                        |                          |                  | Equivalent SPT N value      |
|                  |                    |                        |                          |                  | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                  | Approx shear strength (kPa) |
|                  |                    |                        |                          |                  | Approx EASBP (kPa)          |

|   |      |      |      |    |              |      |    |    |    |     |
|---|------|------|------|----|--------------|------|----|----|----|-----|
| 1 | 0    | 300  | 150  | 11 | Non-Cohesive | 150  | 27 | 4  | 6  | 72  |
| 2 | 300  | 600  | 450  | 19 | Non-Cohesive | 450  | 16 | 7  | 13 | 110 |
| 3 | 600  | 900  | 750  | 21 | Non-Cohesive | 750  | 14 | 8  | 14 | 119 |
| 4 | 900  | 1200 | 1050 | 27 | Non-Cohesive | 1050 | 11 | 10 | 20 | 147 |
| 5 | 1200 | 1500 | 1350 | 39 | Non-Cohesive | 1350 | 8  | 15 | 32 | 204 |
| 6 | 1500 | 1800 | 1650 | 43 | Non-Cohesive | 1650 | 7  | 16 | 36 | 223 |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 17 Location: TP17


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

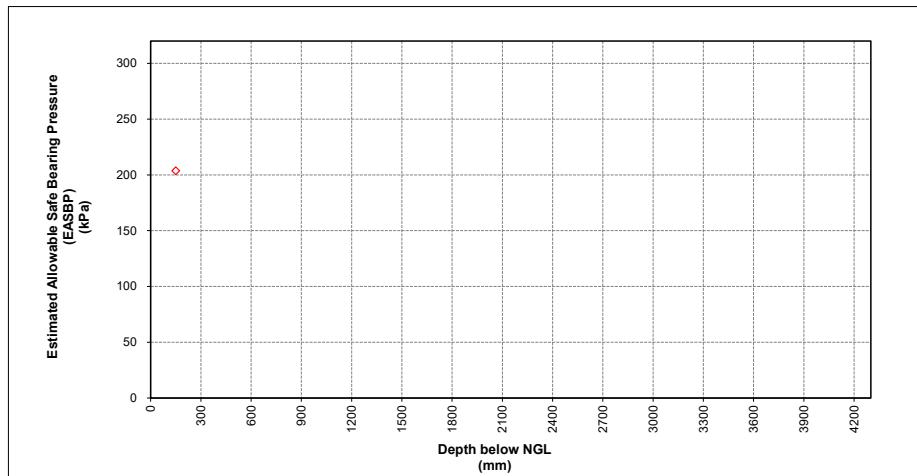
$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 14               | Non-Cohesive | 150                  | 21                        | 5                      | 8                      | 86                          |                    |


## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 18 Location: TP18

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"  
 note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.  
 EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



| Penetration Guide: Consistency |                |                    |
|--------------------------------|----------------|--------------------|
| SPT N Value                    | Cohesive soils | Non-cohesive soils |
| > 50                           | Very stiff     | Very Dense         |
| 31 - 50                        | Stiff          | Dense              |
| 11 - 30                        | Firm           | Med Dense          |
| 5 - 10                         | Soft           | Loose              |
| 0 - 4                          | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

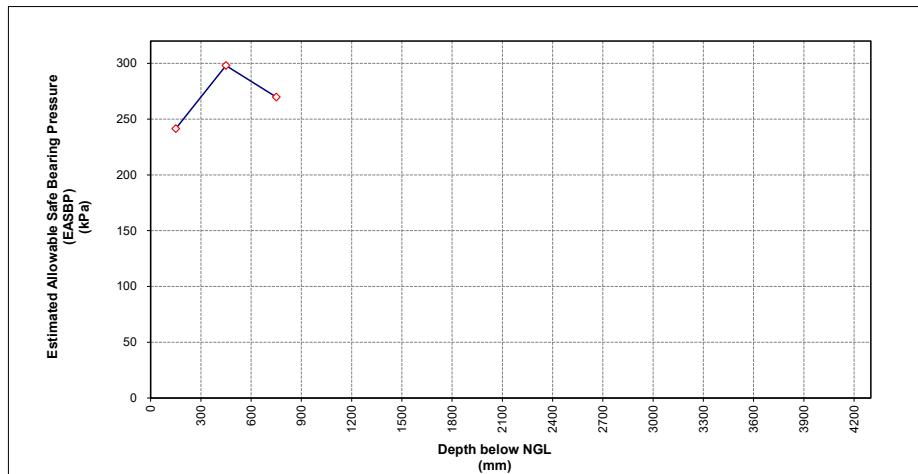
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 39               | Non-Cohesive | 150                  | 8                         | 15                     | 32                     | 204                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 19 Location: TP19


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

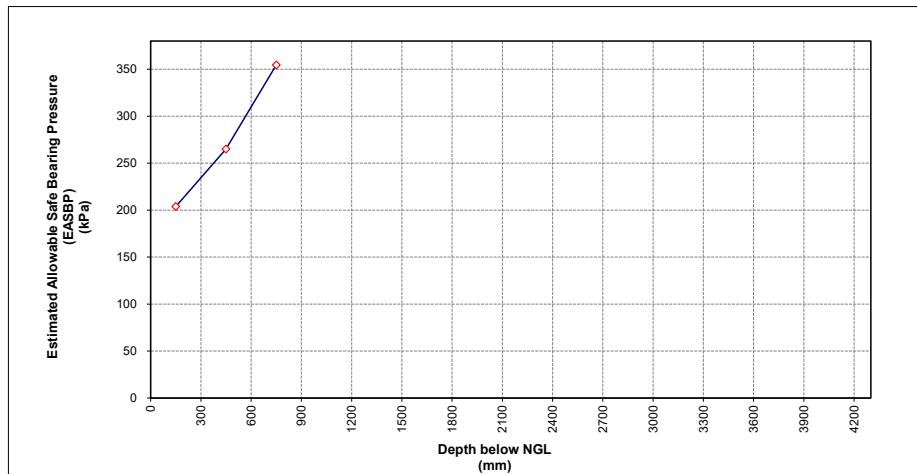
Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |                             |
|------------------|--------------------|------------------------|--------------------------|------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 47               | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 59               | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 53               | Non-Cohesive                |
|                  |                    |                        |                          |                  | DPL penetration (mm/blow)   |
|                  |                    |                        |                          |                  | Equivalent SPT N value      |
|                  |                    |                        |                          |                  | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                  | Approx shear strength (kPa) |
|                  |                    |                        |                          |                  | Approx EASBP (kPa)          |

1 0 300 150 47 Non-Cohesive 150 6 18 41 241  
 2 300 600 450 59 Non-Cohesive 450 5 22 55 298  
 3 600 900 750 53 Non-Cohesive 750 6 20 48 270

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 20 Location: TP20


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

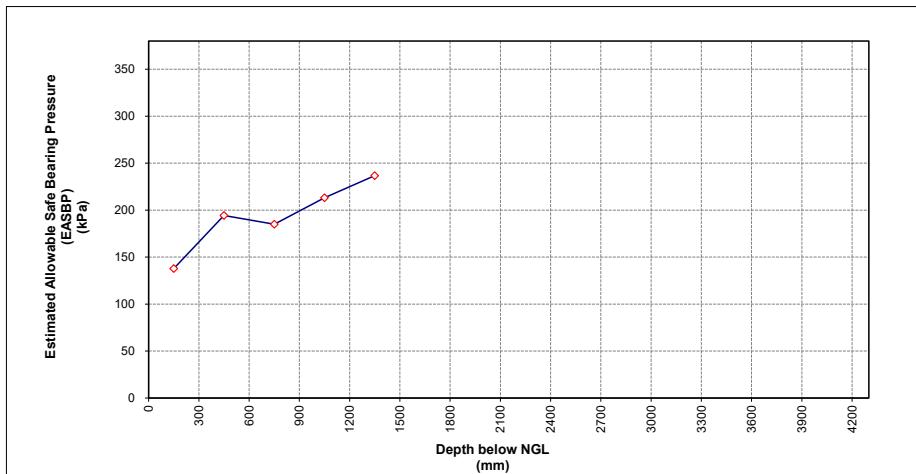
Remarks : Refusal at 0.90m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |                             |
|------------------|--------------------|------------------------|--------------------------|------------------|-----------------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5                           |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type                   |
| 1                | 0                  | 300                    | 150                      | 39               | Non-Cohesive                |
| 2                | 300                | 600                    | 450                      | 52               | Non-Cohesive                |
| 3                | 600                | 900                    | 750                      | 71               | Non-Cohesive                |
|                  |                    |                        |                          |                  | DPL penetration (mm/blow)   |
|                  |                    |                        |                          |                  | Equivalent SPT N value      |
|                  |                    |                        |                          |                  | Approx in-situ CBR (%)      |
|                  |                    |                        |                          |                  | Approx shear strength (kPa) |
|                  |                    |                        |                          |                  | Approx EASBP (kPa)          |

1 0 300 150 39 Non-Cohesive 150 8 15 32 204  
 2 300 600 450 52 Non-Cohesive 450 6 20 47 265  
 3 600 900 750 71 Non-Cohesive 750 4 27 70 355

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 21 Location: TP21


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$

NOTE: First select soil type

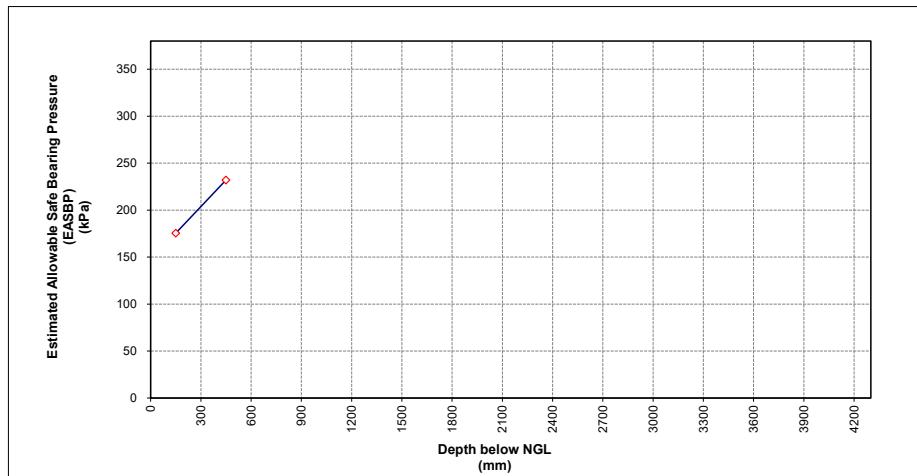
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 1.50m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 25               | Non-Cohesive | 150                  | 12                        | 10                     | 18                     | 138                         |                    |
| 2                | 300                | 600                    | 450                      | 37               | Non-Cohesive | 450                  | 8                         | 14                     | 30                     | 194                         |                    |
| 3                | 600                | 900                    | 750                      | 35               | Non-Cohesive | 750                  | 9                         | 13                     | 28                     | 185                         |                    |
| 4                | 900                | 1200                   | 1050                     | 41               | Non-Cohesive | 1050                 | 7                         | 16                     | 34                     | 213                         |                    |
| 5                | 1200               | 1500                   | 1350                     | 46               | Non-Cohesive | 1350                 | 7                         | 17                     | 40                     | 237                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 22 Location: TP22


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

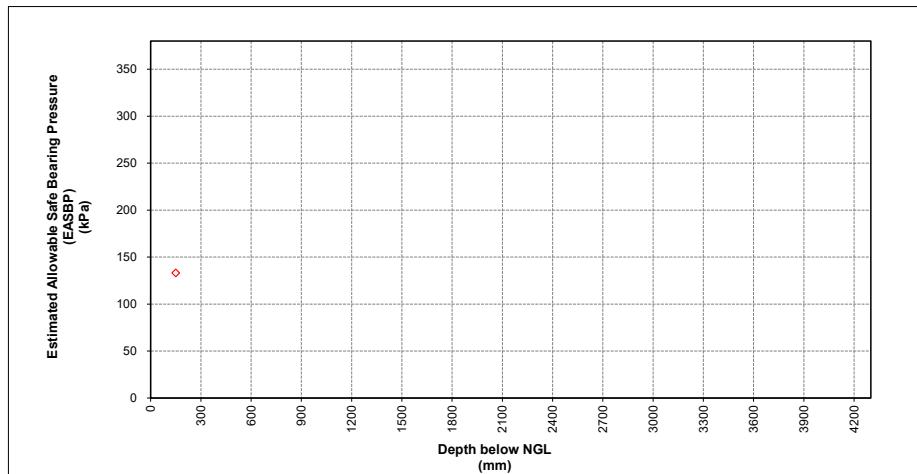
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 33               | Non-Cohesive | 150                  | 9                         | 13                     | 26                     | 175                         |                    |
| 2                | 300                | 600                    | 450                      | 45               | Non-Cohesive | 450                  | 7                         | 17                     | 39                     | 232                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 23 Location: TP23


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

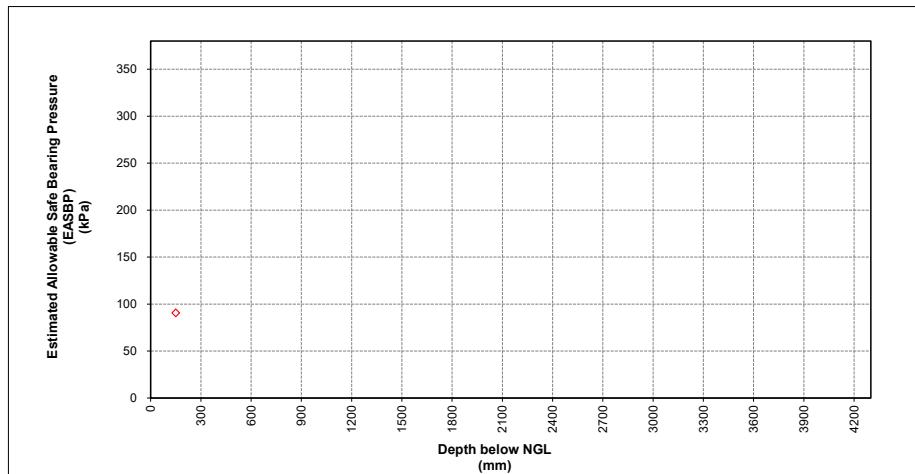
NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR  | Cohesive soils |              |
|------------------|--------------------|------------------------|-----|----------------|--------------|
|                  | 1                  | times Terzaghi's value |     | Nc             | 5            |
| 1                | 0                  | 300                    | 150 | 24             | Non-Cohesive |

| Reading no. | Layer from (mm) | Layer to (mm) | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
|-------------|-----------------|---------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
| 1           | 0               | 300           | 150                      | 24               | Non-Cohesive | 150                  | 13                        | 9                      | 17                     | 133                         |                    |


## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 24 Location: TP24

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"  
 note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.  
 EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

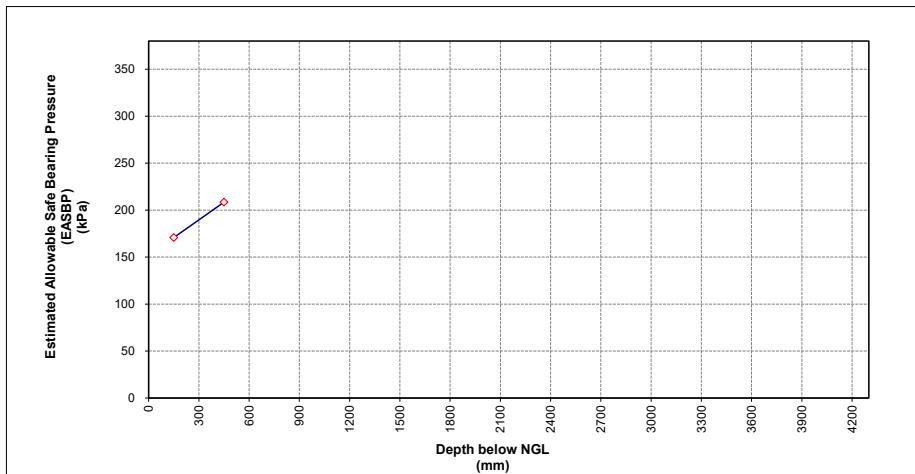
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.30m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 15               | Non-Cohesive | 150                  | 20                        | 6                      | 9                      | 91                          |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVELI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 25 Location: TP25


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

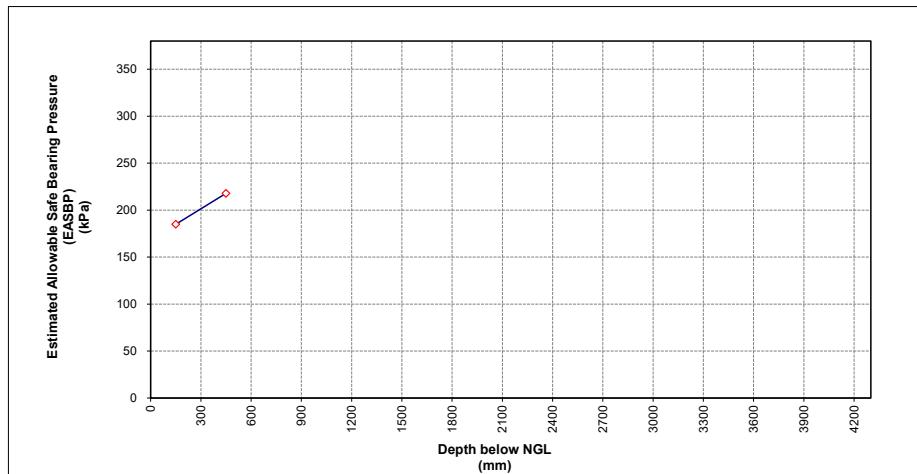
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 32               | Non-Cohesive | 150                  | 9                         | 12                     | 25                     | 171                         |                    |
| 2                | 300                | 600                    | 450                      | 40               | Non-Cohesive | 450                  | 8                         | 15                     | 33                     | 208                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 26 Location: TP26


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

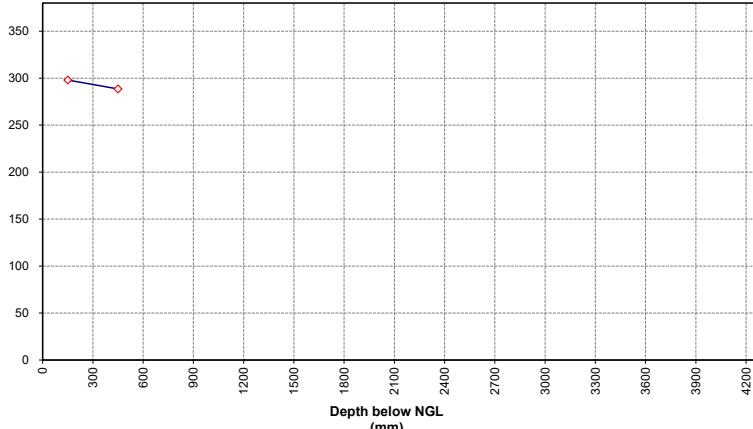
| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    |
| 1                | 0                  | 300                    | 150                      | 35               | Non-Cohesive |
| 2                | 300                | 600                    | 450                      | 42               | Non-Cohesive |

| Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
| 150                  | 9                         | 13                     | 28                     | 185                         | 218                |
| 450                  | 7                         | 16                     | 35                     |                             |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 27 Location: TP27

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle




CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.

Estimated Allowable Safe Bearing Pressure (EASBP) (kPa)



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

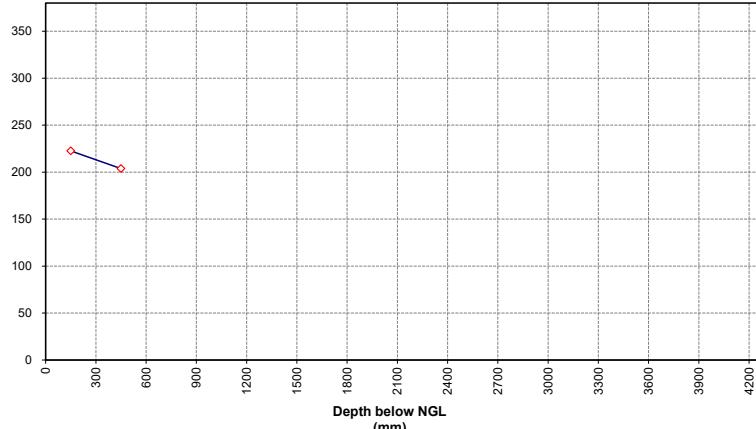
Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    |
| 1                | 0                  | 300                    | 150                      | 59               | Non-Cohesive |
| 2                | 300                | 600                    | 450                      | 57               | Non-Cohesive |
|                  |                    |                        |                          | 450              | 150          |
|                  |                    |                        |                          | 5                | 5            |
|                  |                    |                        |                          |                  | 22           |
|                  |                    |                        |                          |                  | 22           |
|                  |                    |                        |                          |                  | 55           |
|                  |                    |                        |                          |                  | 53           |
|                  |                    |                        |                          |                  | 298          |
|                  |                    |                        |                          |                  | 289          |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 28 Location: TP28

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle




CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.

Estimated Allowable Safe Bearing Pressure (EASBP) (kPa)



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

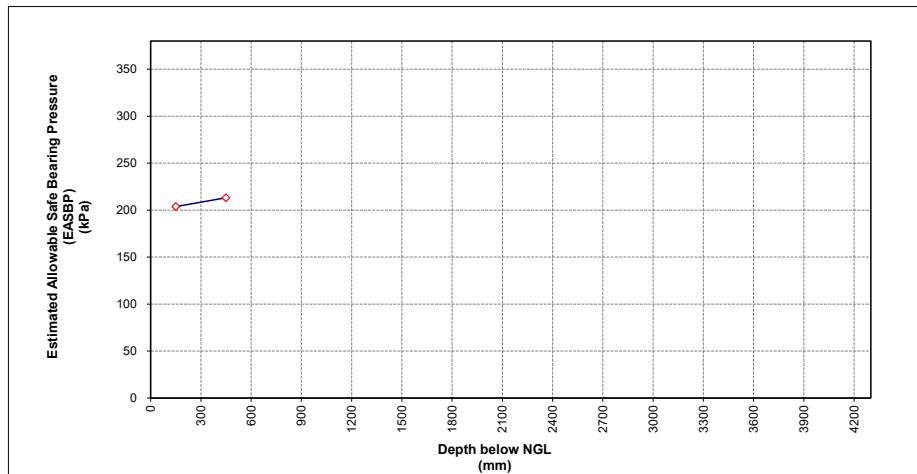
Depth of hole in which DPL was taken : 0.00 mm below ngl

Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DCP penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 43               | Non-Cohesive | 150                  | 7                         | 16                     | 36                     | 223                         |                    |
| 2                | 300                | 600                    | 450                      | 39               | Non-Cohesive | 450                  | 8                         | 15                     | 32                     | 204                         |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 29 Location: TP29


Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle



CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.



### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$$

$$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$$

NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

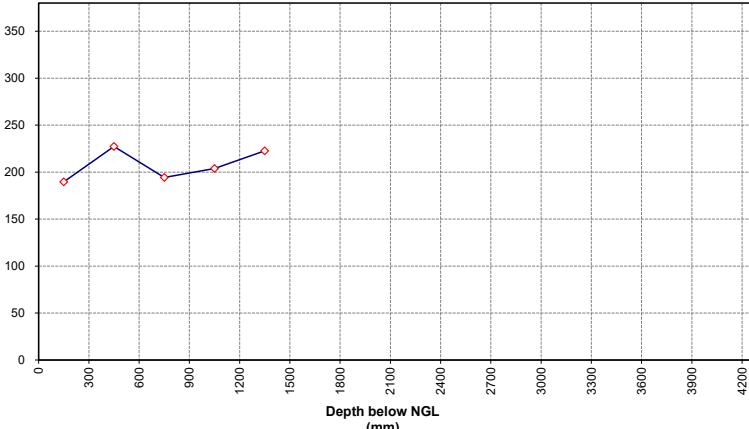
Remarks : Refusal at 0.60m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DCP blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 39               | Non-Cohesive | 150                  | 8                         | 15                     | 32                     | 204                         | 213                |
| 2                | 300                | 600                    | 450                      | 41               | Non-Cohesive | 450                  | 7                         | 16                     | 34                     |                             |                    |

## ESTIMATED ALLOWABLE SAFE BEARING PRESSURE FROM DCP

Job Name: PAARDEVLEI SOLAR PV FARM Date of Test: 04/12/2023  
 Job No: 6047  
 DPL No: 30 Location: TP30

Hammer: 10 kg hammer  
 450 mm drop height  
 25 mm point  
 Cone: 60° angle




CBR from Webster, S.L., Grau, R.H., and Williams, T.P., (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer"

note: EASBP or non-cohesive soils from Terzaghi & Peck p 491 for 25 mm settlement.

EASBP for cohesive soils =  $S_u \cdot N_c / FOS$ . Shear strength ( $S_u$ ) from N via T3 of Geoterminalogy.

Estimated Allowable Safe Bearing Pressure (EASBP) (kPa)



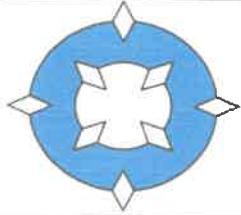
### Penetration Guide: Consistency

| SPT N Value | Cohesive soils | Non-cohesive soils |
|-------------|----------------|--------------------|
| > 50        | Very stiff     | Very Dense         |
| 31 - 50     | Stiff          | Dense              |
| 11 - 30     | Firm           | Med Dense          |
| 5 - 10      | Soft           | Loose              |
| 0 - 4       | Very soft      | Very Loose         |

NOTE: EASBP calculated for cohesive and non-cohesive soils

$SPT N \text{ value} = (DCP \text{ blows}/300\text{mm}) * 0.38$

$CBR = 465 * (DCP \text{ Penetration (mm/blow)})^{-1.31}$


NOTE: First select soil type

Depth of hole in which DPL was taken : 0.00 mm below ngl

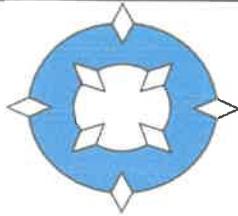
Remarks : Refusal at 1.50m

| Applied Factor : | Non-cohesive soils |                        | OR                       | Cohesive soils   |              |                      |                           |                        |                        |                             |                    |
|------------------|--------------------|------------------------|--------------------------|------------------|--------------|----------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------|
|                  | 1                  | times Terzaghi's value |                          | Nc               | 5            |                      |                           |                        |                        |                             |                    |
| Reading no.      | Layer from (mm)    | Layer to (mm)          | Average layer depth (mm) | DPL blows/300 mm | Soil type    | Depth below NGL (mm) | DPL penetration (mm/blow) | Equivalent SPT N value | Approx in-situ CBR (%) | Approx shear strength (kPa) | Approx EASBP (kPa) |
| 1                | 0                  | 300                    | 150                      | 36               | Non-Cohesive | 150                  | 8                         | 14                     | 29                     | 190                         | 190                |
| 2                | 300                | 600                    | 450                      | 44               | Non-Cohesive | 450                  | 7                         | 17                     | 38                     | 227                         | 227                |
| 3                | 600                | 900                    | 750                      | 37               | Non-Cohesive | 750                  | 8                         | 14                     | 30                     | 194                         | 194                |
| 4                | 900                | 1200                   | 1050                     | 39               | Non-Cohesive | 1050                 | 8                         | 15                     | 32                     | 204                         | 204                |
| 5                | 1200               | 1500                   | 1350                     | 43               | Non-Cohesive | 1350                 | 7                         | 16                     | 36                     | 223                         | 223                |

## *Appendix D: DPSH Tests*



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                         |    |   |
|---------------------|-------------------------|----|---|
| CONTRACT            | Parole Vlei Scherst wat |    |   |
| CONTRACT NUMBER     | S1085                   |    |   |
| CONSULTING ENGINEER | J.C. Africa             |    |   |
| SUPERVISOR          | Newell                  |    |   |
| SHEET               | 1                       | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

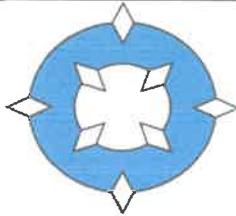
QA240

|              |   |      |          |
|--------------|---|------|----------|
| DPSH- NUMBER | 1 | DATE | 5.12.27. |
| REMARKS      |   |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 1     |           | 3700                |       |           | 7300                |       |           |
| 200                 | 4     |           | 3800                |       |           | 7400                |       |           |
| 300                 | 5     | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 12    |           | 4000                |       |           | 7600                |       |           |
| 500                 | 17    |           | 4100                |       |           | 7700                |       |           |
| 600                 | 18    | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 18    |           | 4300                |       |           | 7900                |       |           |
| 800                 | 20    |           | 4400                |       |           | 8000                |       |           |
| 900                 | 27    | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 30    |           | 4600                |       |           | 8200                |       |           |
| 1100                | 32.   |           | 4700                |       |           | 8300                |       |           |
| 1200                | 40    | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                |       |           | 4900                |       |           | 8500                |       |           |
| 1400                |       |           | 5000                |       |           | 8600                |       |           |
| 1500                |       | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                |       |           | 5200                |       |           | 8800                |       |           |
| 1700                |       |           | 5300                |       |           | 8900                |       |           |
| 1800                |       | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                |       |           | 5500                |       |           | 9100                |       |           |
| 2000                |       |           | 5600                |       |           | 9200                |       |           |
| 2100                |       | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                |       |           | 5800                |       |           | 9400                |       |           |
| 2300                |       |           | 5900                |       |           | 9500                |       |           |
| 2400                |       | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                |       |           | 6100                |       |           | 9700                |       |           |
| 2600                |       |           | 6200                |       |           | 9800                |       |           |
| 2700                |       | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                |       |           | 6400                |       |           | 10000               |       |           |
| 2900                |       |           | 6500                |       |           | 10100               |       |           |
| 3000                |       | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |       |           | 6700                |       |           | 10300               |       |           |
| 3200                |       |           | 6800                |       |           | 10400               |       |           |
| 3300                |       | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |       |           | 7000                |       |           | 10600               |       |           |
| 3500                |       |           | 7100                |       |           | 10700               |       |           |
| 3600                |       | 0         | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                              |    |   |
|---------------------|------------------------------|----|---|
| CONTRACT            | Paproto Vlei Slope Sett west |    |   |
| CONTRACT NUMBER     | J1085                        |    |   |
| CONSULTING ENGINEER | J.G. Africa                  |    |   |
| SUPERVISOR          | Neurville                    |    |   |
| SHEET               | 1                            | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

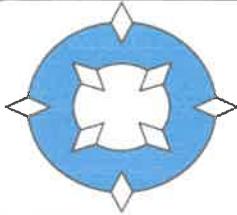
QA240

|              |    |      |          |
|--------------|----|------|----------|
| DPSH- NUMBER | 2. | DATE | 5-12-23. |
| REMARKS      |    |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 2     |           | 3700                |       |           | 7300                |       |           |
| 200                 | 5     |           | 3800                |       |           | 7400                |       |           |
| 300                 | 10    | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 17    |           | 4000                |       |           | 7600                |       |           |
| 500                 | 19    |           | 4100                |       |           | 7700                |       |           |
| 600                 | 10    | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 7     |           | 4300                |       |           | 7900                |       |           |
| 800                 | 18    |           | 4400                |       |           | 8000                |       |           |
| 900                 | 37    | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 19    |           | 4600                |       |           | 8200                |       |           |
| 1100                | 19    |           | 4700                |       |           | 8300                |       |           |
| 1200                | 12    | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 7     |           | 4900                |       |           | 8500                |       |           |
| 1400                | 17    |           | 5000                |       |           | 8600                |       |           |
| 1500                | 37    | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 34    |           | 5200                |       |           | 8800                |       |           |
| 1700                | 36    |           | 5300                |       |           | 8900                |       |           |
| 1800                |       | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                |       |           | 5500                |       |           | 9100                |       |           |
| 2000                |       |           | 5600                |       |           | 9200                |       |           |
| 2100                |       | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                |       |           | 5800                |       |           | 9400                |       |           |
| 2300                |       |           | 5900                |       |           | 9500                |       |           |
| 2400                |       | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                |       |           | 6100                |       |           | 9700                |       |           |
| 2600                |       |           | 6200                |       |           | 9800                |       |           |
| 2700                |       | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                |       |           | 6400                |       |           | 10000               |       |           |
| 2900                |       |           | 6500                |       |           | 10100               |       |           |
| 3000                |       | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |       |           | 6700                |       |           | 10300               |       |           |
| 3200                |       |           | 6800                |       |           | 10400               |       |           |
| 3300                |       | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |       |           | 7000                |       |           | 10600               |       |           |
| 3500                |       |           | 7100                |       |           | 10700               |       |           |
| 3600                |       | 0         | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                            |    |   |
|---------------------|----------------------------|----|---|
| CONTRACT            | Parand Uci Sozer Jet No. 1 |    |   |
| CONTRACT NUMBER     | J1085                      |    |   |
| CONSULTING ENGINEER | S. C. AFRICAN              |    |   |
| SUPERVISOR          | Newbie                     |    |   |
| SHEET               | 1                          | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

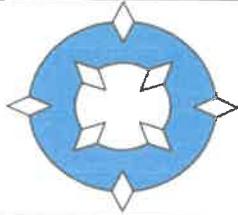
QA240

|              |                                |      |            |
|--------------|--------------------------------|------|------------|
| DPSH- NUMBER | 3                              | DATE | 5. 12. 23. |
| REMARKS      | No Penetration at 1,40 to 1,50 |      |            |

| PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|----------------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 1              |           | 3700                |       |           | 7300                |       |           |
| 200                 | 3              |           | 3800                |       |           | 7400                |       |           |
| 300                 | 8              | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 7              |           | 4000                |       |           | 7600                |       |           |
| 500                 | 4              |           | 4100                |       |           | 7700                |       |           |
| 600                 | 3              | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 3              |           | 4300                |       |           | 7900                |       |           |
| 800                 | 4              |           | 4400                |       |           | 8000                |       |           |
| 900                 | 10             | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 19             |           | 4600                |       |           | 8200                |       |           |
| 1100                | 27             |           | 4700                |       |           | 8300                |       |           |
| 1200                | 22             | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 29             |           | 4900                |       |           | 8500                |       |           |
| 1400                | 42             | -         | 5000                |       |           | 8600                |       |           |
| 1500                | No Penetration |           | 5100                |       | 0         | 8700                |       | 0         |
| 1600                |                |           | 5200                |       |           | 8800                |       |           |
| 1700                |                |           | 5300                |       |           | 8900                |       |           |
| 1800                |                | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                |                |           | 5500                |       |           | 9100                |       |           |
| 2000                |                |           | 5600                |       |           | 9200                |       |           |
| 2100                |                | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                |                |           | 5800                |       |           | 9400                |       |           |
| 2300                |                |           | 5900                |       |           | 9500                |       |           |
| 2400                |                | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                |                |           | 6100                |       |           | 9700                |       |           |
| 2600                |                |           | 6200                |       |           | 9800                |       |           |
| 2700                |                | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                |                |           | 6400                |       |           | 10000               |       |           |
| 2900                |                |           | 6500                |       |           | 10100               |       |           |
| 3000                |                | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |                |           | 6700                |       |           | 10300               |       |           |
| 3200                |                |           | 6800                |       |           | 10400               |       |           |
| 3300                |                | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |                |           | 7000                |       |           | 10600               |       |           |
| 3500                |                |           | 7100                |       |           | 10700               |       |           |
| 3600                |                | 0         | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                      |    |   |
|---------------------|----------------------|----|---|
| CONTRACT            | Parcels Noi Suaotnbt |    |   |
| CONTRACT NUMBER     | J1085                |    |   |
| CONSULTING ENGINEER | J. C. P. K. C. M.    |    |   |
| SUPERVISOR          | Neill                |    |   |
| SHEET               | 1                    | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

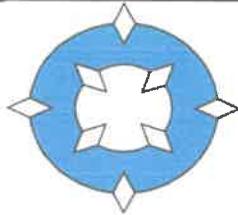
QA240

|              |                                |      |         |
|--------------|--------------------------------|------|---------|
| DPSH- NUMBER | 4                              | DATE | 6.12.25 |
| REMARKS      | No Penetration at 1,40 to 1,50 |      |         |

| PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|----------------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 7              |           | 3700                |       |           | 7300                |       |           |
| 200                 | 5              |           | 3800                |       |           | 7400                |       |           |
| 300                 | 3              | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 4              |           | 4000                |       |           | 7600                |       |           |
| 500                 | 5              |           | 4100                |       |           | 7700                |       |           |
| 600                 | 5              | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 4              |           | 4300                |       |           | 7900                |       |           |
| 800                 | 3              |           | 4400                |       |           | 8000                |       |           |
| 900                 | 3              | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 4              |           | 4600                |       |           | 8200                |       |           |
| 1100                | 4              |           | 4700                |       |           | 8300                |       |           |
| 1200                | 11             | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 34             |           | 4900                |       |           | 8500                |       |           |
| 1400                | 40             |           | 5000                |       |           | 8600                |       |           |
| 1500                | No Penetration |           | 5100                |       | 0         | 8700                |       | 0         |
| 1600                |                |           | 5200                |       |           | 8800                |       |           |
| 1700                |                |           | 5300                |       |           | 8900                |       |           |
| 1800                |                | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                |                |           | 5500                |       |           | 9100                |       |           |
| 2000                |                |           | 5600                |       |           | 9200                |       |           |
| 2100                |                | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                |                |           | 5800                |       |           | 9400                |       |           |
| 2300                |                |           | 5900                |       |           | 9500                |       |           |
| 2400                |                | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                |                |           | 6100                |       |           | 9700                |       |           |
| 2600                |                |           | 6200                |       |           | 9800                |       |           |
| 2700                |                | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                |                |           | 6400                |       |           | 10000               |       |           |
| 2900                |                |           | 6500                |       |           | 10100               |       |           |
| 3000                |                | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |                |           | 6700                |       |           | 10300               |       |           |
| 3200                |                |           | 6800                |       |           | 10400               |       |           |
| 3300                |                | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |                |           | 7000                |       |           | 10600               |       |           |
| 3500                |                |           | 7100                |       |           | 10700               |       |           |
| 3600                |                | 0         | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                         |    |   |
|---------------------|-------------------------|----|---|
| CONTRACT            | Prairie Star Sono Blkst |    |   |
| CONTRACT NUMBER     | J1085                   |    |   |
| CONSULTING ENGINEER | J.G. Africano           |    |   |
| SUPERVISOR          | Nellie                  |    |   |
| SHEET               | 1                       | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

QA240

|              |   |      |          |
|--------------|---|------|----------|
| DPSH- NUMBER | 5 | DATE | 6.12.23. |
| REMARKS      |   |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 1     |           | 3700                |       |           | 7300                |       |           |
| 200                 | 3     |           | 3800                |       |           | 7400                |       |           |
| 300                 | 4     | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 3     |           | 4000                |       |           | 7600                |       |           |
| 500                 | 5     |           | 4100                |       |           | 7700                |       |           |
| 600                 | 8     | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 7     |           | 4300                |       |           | 7900                |       |           |
| 800                 | 7     |           | 4400                |       |           | 8000                |       |           |
| 900                 | 8     | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 10    |           | 4600                |       |           | 8200                |       |           |
| 1100                | 8     |           | 4700                |       |           | 8300                |       |           |
| 1200                | 9     | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 14    |           | 4900                |       |           | 8500                |       |           |
| 1400                | 27    |           | 5000                |       |           | 8600                |       |           |
| 1500                | 26    | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 34    |           | 5200                |       |           | 8800                |       |           |
| 1700                | 37    |           | 5300                |       |           | 8900                |       |           |
| 1800                | 39    | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                |       |           | 5500                |       |           | 9100                |       |           |
| 2000                |       |           | 5600                |       |           | 9200                |       |           |
| 2100                |       | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                |       |           | 5800                |       |           | 9400                |       |           |
| 2300                |       |           | 5900                |       |           | 9500                |       |           |
| 2400                |       | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                |       |           | 6100                |       |           | 9700                |       |           |
| 2600                |       |           | 6200                |       |           | 9800                |       |           |
| 2700                |       | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                |       |           | 6400                |       |           | 10000               |       |           |
| 2900                |       |           | 6500                |       |           | 10100               |       |           |
| 3000                |       | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |       |           | 6700                |       |           | 10300               |       |           |
| 3200                |       |           | 6800                |       |           | 10400               |       |           |
| 3300                |       | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |       |           | 7000                |       |           | 10600               |       |           |
| 3500                |       |           | 7100                |       |           | 10700               |       |           |
| 3600                |       | 0         | 7200                |       | 0         | 10800               |       | 0         |

**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

CONTRACT

CONTRACT

NUMBER

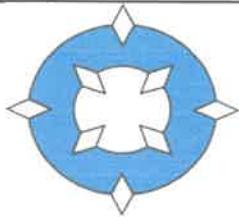
CONSULTING

ENGINEER

SUPERVISOR

SHEET

Project No. 1085  
JG Africa  
New


1 OF 1

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

QA240

|              |                                  |      |          |
|--------------|----------------------------------|------|----------|
| DPSH- NUMBER | 6                                | DATE | 4.12.23. |
| REMARKS      | No Penetration at 2,80 to 2,90 . |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300      | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|----------------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 3     |                | 3700                |       |           | 7300                |       |           |
| 200                 | 3     |                | 3800                |       |           | 7400                |       |           |
| 300                 | 4     | 0              | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 2     |                | 4000                |       |           | 7600                |       |           |
| 500                 | 1     |                | 4100                |       |           | 7700                |       |           |
| 600                 | 2     | 0              | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 2     |                | 4300                |       |           | 7900                |       |           |
| 800                 | 2     |                | 4400                |       |           | 8000                |       |           |
| 900                 | 4     | 0              | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 6     |                | 4600                |       |           | 8200                |       |           |
| 1100                | 8     |                | 4700                |       |           | 8300                |       |           |
| 1200                | 5     | 0              | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 4     |                | 4900                |       |           | 8500                |       |           |
| 1400                | 4     |                | 5000                |       |           | 8600                |       |           |
| 1500                | 3     | 0              | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 1     |                | 5200                |       |           | 8800                |       |           |
| 1700                | 2     |                | 5300                |       |           | 8900                |       |           |
| 1800                | 1     | 0              | 5400                |       | 0         | 9000                |       | 0         |
| 1900                | 2     |                | 5500                |       |           | 9100                |       |           |
| 2000                | 2     |                | 5600                |       |           | 9200                |       |           |
| 2100                | 2     | 0              | 5700                |       | 0         | 9300                |       | 0         |
| 2200                | 2     |                | 5800                |       |           | 9400                |       |           |
| 2300                | 3     |                | 5900                |       |           | 9500                |       |           |
| 2400                | 2     | 0              | 6000                |       | 0         | 9600                |       | 0         |
| 2500                | 3     |                | 6100                |       |           | 9700                |       |           |
| 2600                | 3     |                | 6200                |       |           | 9800                |       |           |
| 2700                | 10    | 0              | 6300                |       | 0         | 9900                |       | 0         |
| 2800                | 40    | No Penetration | 6400                |       |           | 10000               |       |           |
| 2900                |       |                | 6500                |       |           | 10100               |       |           |
| 3000                |       | 0              | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |       |                | 6700                |       |           | 10300               |       |           |
| 3200                |       |                | 6800                |       |           | 10400               |       |           |
| 3300                |       | 0              | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |       |                | 7000                |       |           | 10600               |       |           |
| 3500                |       |                | 7100                |       |           | 10700               |       |           |
| 3600                |       | 0              | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

|                        |               |    |   |
|------------------------|---------------|----|---|
| CONTRACT               | D-3085-Africa |    |   |
| CONTRACT<br>NUMBER     | D-3085        |    |   |
| CONSULTING<br>ENGINEER | S.G. Africa   |    |   |
| SUPERVISOR             | Newell        |    |   |
| SHEET                  | 1             | OF | 1 |

# DYNAMIC PROBE SUPER HEAVY

## SITE DPSH REPORT

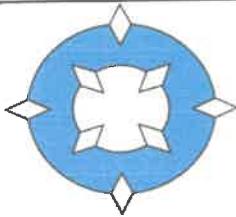
QA240

|              |                                |      |           |
|--------------|--------------------------------|------|-----------|
| DPSH- NUMBER | 7                              | DATE | 5. 12. 23 |
| REMARKS      | No Penetration at 5,20 to 5,30 |      |           |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|----------------|-----------|---------------------|-------|-----------|
| 100                 | 3     |           | 3700                | 15             |           | 7300                |       |           |
| 200                 | 6     |           | 3800                | 7              |           | 7400                |       |           |
| 300                 | 7     | 0         | 3900                | 4              | 0         | 7500                |       | 0         |
| 400                 | 6     |           | 4000                | 5              |           | 7600                |       |           |
| 500                 | 5     |           | 4100                | 5              |           | 7700                |       |           |
| 600                 | 7     | 0         | 4200                | 8              | 0         | 7800                |       | 0         |
| 700                 | 6     |           | 4300                | 9              |           | 7900                |       |           |
| 800                 | 9     |           | 4400                | 10             |           | 8000                |       |           |
| 900                 | 7     | 0         | 4500                | 8              | 0         | 8100                |       | 0         |
| 1000                | 7     |           | 4600                | 9              |           | 8200                |       |           |
| 1100                | 5     |           | 4700                | 9              |           | 8300                |       |           |
| 1200                | 6     | 0         | 4800                | 7              | 0         | 8400                |       | 0         |
| 1300                | 6     |           | 4900                | 8              |           | 8500                |       |           |
| 1400                | 6     |           | 5000                | 8              |           | 8600                |       |           |
| 1500                | 6     | 0         | 5100                | 7              | 0         | 8700                |       | 0         |
| 1600                | 4     |           | 5200                | 40             |           | 8800                |       |           |
| 1700                | 3     |           | 5300                | No Penetration |           | 8900                |       |           |
| 1800                | 2     | 0         | 5400                |                | 0         | 9000                |       | 0         |
| 1900                | 4     |           | 5500                |                |           | 9100                |       |           |
| 2000                | 5     |           | 5600                |                |           | 9200                |       |           |
| 2100                | 4     | 0         | 5700                |                | 0         | 9300                |       | 0         |
| 2200                | 3     |           | 5800                |                |           | 9400                |       |           |
| 2300                | 3     |           | 5900                |                |           | 9500                |       |           |
| 2400                | 2     | 0         | 6000                |                | 0         | 9600                |       | 0         |
| 2500                | 6     |           | 6100                |                |           | 9700                |       |           |
| 2600                | 5     |           | 6200                |                |           | 9800                |       |           |
| 2700                | 2     | 0         | 6300                |                | 0         | 9900                |       | 0         |
| 2800                | 3     |           | 6400                |                |           | 10000               |       |           |
| 2900                | 6     |           | 6500                |                |           | 10100               |       |           |
| 3000                | 5     | 0         | 6600                |                | 0         | 10200               |       | 0         |
| 3100                | 7     |           | 6700                |                |           | 10300               |       |           |
| 3200                | 7     |           | 6800                |                |           | 10400               |       |           |
| 3300                | 9     | 0         | 6900                |                | 0         | 10500               |       | 0         |
| 3400                | 10    |           | 7000                |                |           | 10600               |       |           |
| 3500                | 5     |           | 7100                |                |           | 10700               |       |           |
| 3600                | 13    | 0         | 7200                |                | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                            |    |   |
|---------------------|----------------------------|----|---|
| CONTRACT            | Paradeiklei Scheme Pt West |    |   |
| CONTRACT NUMBER     | J1085                      |    |   |
| CONSULTING ENGINEER | S.G. Africa                |    |   |
| SUPERVISOR          | New H2                     |    |   |
| SHEET               | 1                          | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

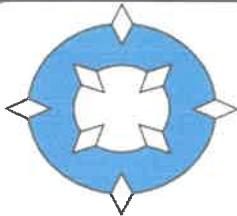
QA240

|              |                              |      |         |
|--------------|------------------------------|------|---------|
| DPSH- NUMBER | 8                            | DATE | 5-12-23 |
| REMARKS      | No Penetration at 740 to 750 |      |         |

| PENETRATION<br>(mm) | BLOWS  | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS          | BLOWS 300 |
|---------------------|--------|-----------|---------------------|-------|-----------|---------------------|----------------|-----------|
| 100                 | 6      |           | 3700                | 9     |           | 7300                | 70             |           |
| 200                 | 20     |           | 3800                | 7     |           | 7400                | 42             |           |
| 300                 | Prop   | 0         | 3900                | 5     | 0         | 7500                | No Penetration |           |
| 400                 | By     |           | 4000                | 9     |           | 7600                |                |           |
| 500                 |        |           | 4100                | 8     |           | 7700                |                |           |
| 600                 | Wet/17 | 0         | 4200                | 8     | 0         | 7800                |                | 0         |
| 700                 |        |           | 4300                | 6     |           | 7900                |                |           |
| 800                 | 3      |           | 4400                | 6     |           | 8000                |                |           |
| 900                 | 6      | 0         | 4500                | 6     | 0         | 8100                |                | 0         |
| 1000                | 19     |           | 4600                | 7     |           | 8200                |                |           |
| 1100                | 14     |           | 4700                | 7     |           | 8300                |                |           |
| 1200                | 12     | 0         | 4800                | 5     | 0         | 8400                |                | 0         |
| 1300                | 10     |           | 4900                | 4     |           | 8500                |                |           |
| 1400                | 10     |           | 5000                | 4     |           | 8600                |                |           |
| 1500                | 9      | 0         | 5100                | 3     | 0         | 8700                |                | 0         |
| 1600                | 10     |           | 5200                | 2     |           | 8800                |                |           |
| 1700                | 10     |           | 5300                | 1     |           | 8900                |                |           |
| 1800                | 11     | 0         | 5400                | 1     | 0         | 9000                |                | 0         |
| 1900                | 10     |           | 5500                | 2     |           | 9100                |                |           |
| 2000                | 6      |           | 5600                | 2     |           | 9200                |                |           |
| 2100                | 5      | 0         | 5700                | 4     | 0         | 9300                |                | 0         |
| 2200                | 5      |           | 5800                | 5     |           | 9400                |                |           |
| 2300                | 7      |           | 5900                | 4     |           | 9500                |                |           |
| 2400                | 9      | 0         | 6000                | 4     | 0         | 9600                |                | 0         |
| 2500                | 17     |           | 6100                | 4     |           | 9700                |                |           |
| 2600                | 9      |           | 6200                | 4     |           | 9800                |                |           |
| 2700                | 6      | 0         | 6300                | 6     | 0         | 9900                |                | 0         |
| 2800                | 7      |           | 6400                | 5     |           | 10000               |                |           |
| 2900                | 10     |           | 6500                | 7     |           | 10100               |                |           |
| 3000                | 18     | 0         | 6600                | 8     | 0         | 10200               |                | 0         |
| 3100                | 12     |           | 6700                | 12    |           | 10300               |                |           |
| 3200                | 10     |           | 6800                | 8     |           | 10400               |                |           |
| 3300                | 10     | 0         | 6900                | 9     | 0         | 10500               |                | 0         |
| 3400                | 10     |           | 7000                | 10    |           | 10600               |                |           |
| 3500                | 10     |           | 7100                | 14    |           | 10700               |                |           |
| 3600                | 10     | 0         | 7200                | 20    | 0         | 10800               |                | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                           |    |   |
|---------------------|---------------------------|----|---|
| CONTRACT            | Prepared for Smeed & West |    |   |
| CONTRACT NUMBER     | J1085                     |    |   |
| CONSULTING ENGINEER | J.G Africa                |    |   |
| SUPERVISOR          | Natalie.                  |    |   |
| SHEET               | 1                         | OF | 1 |

## DYNAMIC PROBE SUPER HEAVY

### SITE DPSH REPORT

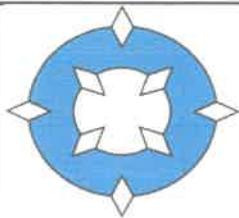
QA240

| DPSH- NUMBER            | 9                              |   | DATE |                | 5.12.23 |       |  |  |  |  |
|-------------------------|--------------------------------|---|------|----------------|---------|-------|--|--|--|--|
| REMARKS                 | No Penetration at 7-10 to 7,20 |   |      |                |         |       |  |  |  |  |
| <b>PENETRATION (mm)</b> |                                |   |      |                |         |       |  |  |  |  |
| 100                     | 1                              |   | 3700 | 7              |         | 7300  |  |  |  |  |
| 200                     | 1                              |   | 3800 | 9              |         | 7400  |  |  |  |  |
| 300                     | 1                              | 0 | 3900 | 7              | 0       | 7500  |  |  |  |  |
| 400                     | 1                              |   | 4000 | 4              |         | 7600  |  |  |  |  |
| 500                     | 1                              |   | 4100 | 5              |         | 7700  |  |  |  |  |
| 600                     | 1                              | 0 | 4200 | 5              | 0       | 7800  |  |  |  |  |
| 700                     | 2                              |   | 4300 | 2              |         | 7900  |  |  |  |  |
| 800                     | 2                              |   | 4400 | 2              |         | 8000  |  |  |  |  |
| 900                     | 2                              | 0 | 4500 | 2              | 0       | 8100  |  |  |  |  |
| 1000                    | 2                              |   | 4600 | 2              |         | 8200  |  |  |  |  |
| 1100                    | 1                              |   | 4700 | 2              |         | 8300  |  |  |  |  |
| 1200                    | 2                              | 0 | 4800 | 4              | 0       | 8400  |  |  |  |  |
| 1300                    | 1                              |   | 4900 | 4              |         | 8500  |  |  |  |  |
| 1400                    | 1                              |   | 5000 | 7              |         | 8600  |  |  |  |  |
| 1500                    | 1                              | 0 | 5100 | 8              | 0       | 8700  |  |  |  |  |
| 1600                    | 1                              |   | 5200 | 8              |         | 8800  |  |  |  |  |
| 1700                    | 2                              |   | 5300 | 8              |         | 8900  |  |  |  |  |
| 1800                    | 2                              | 0 | 5400 | 9              | 0       | 9000  |  |  |  |  |
| 1900                    | 1                              |   | 5500 | 11             |         | 9100  |  |  |  |  |
| 2000                    | 2                              |   | 5600 | 12             |         | 9200  |  |  |  |  |
| 2100                    | 3                              | 0 | 5700 | 13             | 0       | 9300  |  |  |  |  |
| 2200                    | 5                              |   | 5800 | 10             |         | 9400  |  |  |  |  |
| 2300                    | 5                              |   | 5900 | 10             |         | 9500  |  |  |  |  |
| 2400                    | 6                              | 0 | 6000 | 11             | 0       | 9600  |  |  |  |  |
| 2500                    | 5                              |   | 6100 | 11             |         | 9700  |  |  |  |  |
| 2600                    | 7                              |   | 6200 | 12             |         | 9800  |  |  |  |  |
| 2700                    | 6                              | 0 | 6300 | 11             | 0       | 9900  |  |  |  |  |
| 2800                    | 6                              |   | 6400 | 11             |         | 10000 |  |  |  |  |
| 2900                    | 6                              |   | 6500 | 11             |         | 10100 |  |  |  |  |
| 3000                    | 5                              | 0 | 6600 | 9              | 0       | 10200 |  |  |  |  |
| 3100                    | 7                              |   | 6700 | 9              |         | 10300 |  |  |  |  |
| 3200                    | 9                              |   | 6800 | 6              |         | 10400 |  |  |  |  |
| 3300                    | 9                              | 0 | 6900 | 12             | 0       | 10500 |  |  |  |  |
| 3400                    | 8                              |   | 7000 | 14             |         | 10600 |  |  |  |  |
| 3500                    | 8                              |   | 7100 | 37             |         | 10700 |  |  |  |  |
| 3600                    | 7                              | 0 | 7200 | No Penetration |         | 10800 |  |  |  |  |

**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

|                     |                          |    |   |
|---------------------|--------------------------|----|---|
| CONTRACT            | Paraklet bei Soweto West |    |   |
| CONTRACT NUMBER     | J1085                    |    |   |
| CONSULTING ENGINEER | S.G Africa<br>Neurthe    |    |   |
| SUPERVISOR          |                          |    |   |
| SHEET               | 1                        | OF | 1 |


## DYNAMIC PROBE SUPER HEAVY

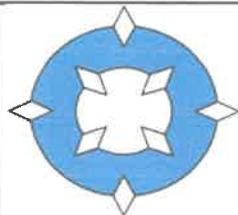
### SITE DPSH REPORT

QA240

|              |    |      |          |
|--------------|----|------|----------|
| DPSH- NUMBER | 10 | DATE | 5.12.23. |
| REMARKS      |    |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 5     |           | 3700                | 8     |           | 7300                |       |           |
| 200                 | 11    |           | 3800                | 9     |           | 7400                |       |           |
| 300                 | 11    | 0         | 3900                | 6     | 0         | 7500                |       | 0         |
| 400                 | 10    |           | 4000                | 10    |           | 7600                |       |           |
| 500                 | 10    |           | 4100                | 6     |           | 7700                |       |           |
| 600                 | 6     | 0         | 4200                | 6     | 0         | 7800                |       | 0         |
| 700                 | 10    |           | 4300                | 10    |           | 7900                |       |           |
| 800                 | 11    |           | 4400                | 11    |           | 8000                |       |           |
| 900                 | 12    | 0         | 4500                | 12    | 0         | 8100                |       | 0         |
| 1000                | 19    |           | 4600                | 19    |           | 8200                |       |           |
| 1100                | 3     |           | 4700                | 23    |           | 8300                |       |           |
| 1200                | 3     | 0         | 4800                | 32    | 0         | 8400                |       | 0         |
| 1300                | 4     |           | 4900                | 31    |           | 8500                |       |           |
| 1400                | 5     |           | 5000                | 34    |           | 8600                |       |           |
| 1500                | 9     | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 18    |           | 5200                |       |           | 8800                |       |           |
| 1700                | 19    |           | 5300                |       |           | 8900                |       |           |
| 1800                | 11    | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                | 6     |           | 5500                |       |           | 9100                |       |           |
| 2000                | 4     |           | 5600                |       |           | 9200                |       |           |
| 2100                | 2     | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                | 3     |           | 5800                |       |           | 9400                |       |           |
| 2300                | 2     |           | 5900                |       |           | 9500                |       |           |
| 2400                | 2     | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                | 3     |           | 6100                |       |           | 9700                |       |           |
| 2600                | 2     |           | 6200                |       |           | 9800                |       |           |
| 2700                | 2     | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                | 1     |           | 6400                |       |           | 10000               |       |           |
| 2900                | 1     |           | 6500                |       |           | 10100               |       |           |
| 3000                | 4     | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                | 5     |           | 6700                |       |           | 10300               |       |           |
| 3200                | 7     |           | 6800                |       |           | 10400               |       |           |
| 3300                | 10    | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                | 14    |           | 7000                |       |           | 10600               |       |           |
| 3500                | 14    |           | 7100                |       |           | 10700               |       |           |
| 3600                | 12    | 0         | 7200                |       | 0         | 10800               |       | 0         |

**FAIRBROTHER**


GEOTECHNICAL ENGINEERING

|                     |                          |    |   |
|---------------------|--------------------------|----|---|
| CONTRACT            | Project in Somerset West |    |   |
| CONTRACT NUMBER     | JG Africa J1085          |    |   |
| CONSULTING ENGINEER | JG Africa CA             |    |   |
| SUPERVISOR          | Neville                  |    |   |
| SHEET               | 1                        | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
**SITE DPSH REPORT**

QA240

| DPSH- NUMBER        | 16                             | DATE      | 4.12.23             |  |  |  |
|---------------------|--------------------------------|-----------|---------------------|--|--|--|
| REMARKS             | No Penetration at 2,90 to 3,00 |           |                     |  |  |  |
| <hr/>               |                                |           |                     |  |  |  |
| <hr/>               |                                |           |                     |  |  |  |
| PENETRATION<br>(mm) | BLOWS                          | BLOWS 300 | PENETRATION<br>(mm) |  |  |  |
| 100                 | 8                              |           | 3700                |  |  |  |
| 200                 | 8                              |           | 3800                |  |  |  |
| 300                 | 8                              | 0         | 3900                |  |  |  |
| 400                 | 5                              |           | 4000                |  |  |  |
| 500                 | 5                              |           | 4100                |  |  |  |
| 600                 | 4                              | 0         | 4200                |  |  |  |
| 700                 | 4                              |           | 4300                |  |  |  |
| 800                 | 3                              |           | 4400                |  |  |  |
| 900                 | 3                              | 0         | 4500                |  |  |  |
| 1000                | 4                              |           | 4600                |  |  |  |
| 1100                | 4                              |           | 4700                |  |  |  |
| 1200                | 4                              | 0         | 4800                |  |  |  |
| 1300                | 4                              |           | 4900                |  |  |  |
| 1400                | 3                              |           | 5000                |  |  |  |
| 1500                | 6                              | 0         | 5100                |  |  |  |
| 1600                | 6                              |           | 5200                |  |  |  |
| 1700                | 5                              |           | 5300                |  |  |  |
| 1800                | 6                              | 0         | 5400                |  |  |  |
| 1900                | 6                              |           | 5500                |  |  |  |
| 2000                | 9                              |           | 5600                |  |  |  |
| 2100                | 4                              | 0         | 5700                |  |  |  |
| 2200                | 2                              |           | 5800                |  |  |  |
| 2300                | 2                              |           | 5900                |  |  |  |
| 2400                | 3                              | 0         | 6000                |  |  |  |
| 2500                | 5                              |           | 6100                |  |  |  |
| 2600                | 6                              |           | 6200                |  |  |  |
| 2700                | 3                              | 0         | 6300                |  |  |  |
| 2800                | 8                              |           | 6400                |  |  |  |
| 2900                | 37                             |           | 6500                |  |  |  |
| 3000                | No Penetration                 |           | 6600                |  |  |  |
| 3100                |                                |           | 6700                |  |  |  |
| 3200                |                                |           | 6800                |  |  |  |
| 3300                |                                | 0         | 6900                |  |  |  |
| 3400                |                                |           | 7000                |  |  |  |
| 3500                |                                |           | 7100                |  |  |  |
| 3600                |                                | 0         | 7200                |  |  |  |

**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

CONTRACT

Parrotelac Sereftub A

CONTRACT  
NUMBER

J1085

CONSULTING  
ENGINEER

J.C. Africa

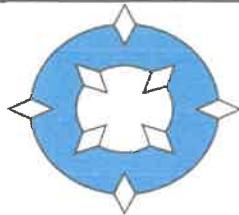
SUPERVISOR

Neville

SHEET

1

OF


1

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

QA240

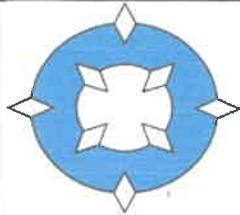
|              |                                |      |         |
|--------------|--------------------------------|------|---------|
| DPSH- NUMBER | 12.                            | DATE | 4.12.23 |
| REMARKS      | No Penetration AT 2,70 to 2,80 |      |         |

| PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|----------------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 4              |           | 3700                |       |           | 7300                |       |           |
| 200                 | 7              |           | 3800                |       |           | 7400                |       |           |
| 300                 | 2              | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 1              |           | 4000                |       |           | 7600                |       |           |
| 500                 | 1              |           | 4100                |       |           | 7700                |       |           |
| 600                 | 1              | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 1              |           | 4300                |       |           | 7900                |       |           |
| 800                 | 1              |           | 4400                |       |           | 8000                |       |           |
| 900                 | 2              | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 3              |           | 4600                |       |           | 8200                |       |           |
| 1100                | 2              |           | 4700                |       |           | 8300                |       |           |
| 1200                | 2              | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 3              |           | 4900                |       |           | 8500                |       |           |
| 1400                | 6              |           | 5000                |       |           | 8600                |       |           |
| 1500                | 6              | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 9              |           | 5200                |       |           | 8800                |       |           |
| 1700                | 8              |           | 5300                |       |           | 8900                |       |           |
| 1800                | 7              | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                | 5              |           | 5500                |       |           | 9100                |       |           |
| 2000                | 5              |           | 5600                |       |           | 9200                |       |           |
| 2100                | 8              | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                | 8              |           | 5800                |       |           | 9400                |       |           |
| 2300                | 10             |           | 5900                |       |           | 9500                |       |           |
| 2400                | 11             | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                | 16             |           | 6100                |       |           | 9700                |       |           |
| 2600                | 21             |           | 6200                |       |           | 9800                |       |           |
| 2700                | 36             | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                | No Penetration |           | 6400                |       |           | 10000               |       |           |
| 2900                |                |           | 6500                |       |           | 10100               |       |           |
| 3000                |                | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |                |           | 6700                |       |           | 10300               |       |           |
| 3200                |                |           | 6800                |       |           | 10400               |       |           |
| 3300                |                | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |                |           | 7000                |       |           | 10600               |       |           |
| 3500                |                |           | 7100                |       |           | 10700               |       |           |
| 3600                |                | 0         | 7200                |       | 0         | 10800               |       | 0         |

**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

|                     |                          |    |   |
|---------------------|--------------------------|----|---|
| CONTRACT            | Parcels 1000 Sore Betwst |    |   |
| CONTRACT NUMBER     | J1085                    |    |   |
| CONSULTING ENGINEER | J. G. A. KIC             |    |   |
| SUPERVISOR          | Neatlie                  |    |   |
| SHEET               | 1                        | OF | 1 |


## DYNAMIC PROBE SUPER HEAVY

### SITE DPSH REPORT

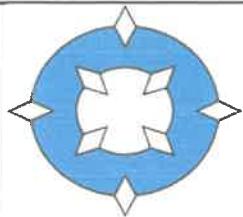
QA240

|              |                               |      |          |
|--------------|-------------------------------|------|----------|
| DPSH- NUMBER | 13.                           | DATE | 6.12.23. |
| REMARKS      | No Penetration at 280 to 2,90 |      |          |

| PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|----------------|-----------|---------------------|-------|-----------|---------------------|-------|-----------|
| 100                 | 5              |           | 3700                |       |           | 7300                |       |           |
| 200                 | 7              |           | 3800                |       |           | 7400                |       |           |
| 300                 | 5              | 0         | 3900                |       | 0         | 7500                |       | 0         |
| 400                 | 3              |           | 4000                |       |           | 7600                |       |           |
| 500                 | 3              |           | 4100                |       |           | 7700                |       |           |
| 600                 | 2              | 0         | 4200                |       | 0         | 7800                |       | 0         |
| 700                 | 1              |           | 4300                |       |           | 7900                |       |           |
| 800                 | 1              |           | 4400                |       |           | 8000                |       |           |
| 900                 | 9              | 0         | 4500                |       | 0         | 8100                |       | 0         |
| 1000                | 12.            |           | 4600                |       |           | 8200                |       |           |
| 1100                | 14             |           | 4700                |       |           | 8300                |       |           |
| 1200                | 10             | 0         | 4800                |       | 0         | 8400                |       | 0         |
| 1300                | 12             |           | 4900                |       |           | 8500                |       |           |
| 1400                | 15             |           | 5000                |       |           | 8600                |       |           |
| 1500                | 13.            | 0         | 5100                |       | 0         | 8700                |       | 0         |
| 1600                | 7              |           | 5200                |       |           | 8800                |       |           |
| 1700                | 9              |           | 5300                |       |           | 8900                |       |           |
| 1800                | 8              | 0         | 5400                |       | 0         | 9000                |       | 0         |
| 1900                | 7              |           | 5500                |       |           | 9100                |       |           |
| 2000                | 7              |           | 5600                |       |           | 9200                |       |           |
| 2100                | 7              | 0         | 5700                |       | 0         | 9300                |       | 0         |
| 2200                | 5              |           | 5800                |       |           | 9400                |       |           |
| 2300                | 9              |           | 5900                |       |           | 9500                |       |           |
| 2400                | 9              | 0         | 6000                |       | 0         | 9600                |       | 0         |
| 2500                | 9              |           | 6100                |       |           | 9700                |       |           |
| 2600                | 11             |           | 6200                |       |           | 9800                |       |           |
| 2700                | 24             | 0         | 6300                |       | 0         | 9900                |       | 0         |
| 2800                | 40             |           | 6400                |       |           | 10000               |       |           |
| 2900                | No Penetration |           | 6500                |       |           | 10100               |       |           |
| 3000                |                | 0         | 6600                |       | 0         | 10200               |       | 0         |
| 3100                |                |           | 6700                |       |           | 10300               |       |           |
| 3200                |                |           | 6800                |       |           | 10400               |       |           |
| 3300                |                | 0         | 6900                |       | 0         | 10500               |       | 0         |
| 3400                |                |           | 7000                |       |           | 10600               |       |           |
| 3500                |                |           | 7100                |       |           | 10700               |       |           |
| 3600                |                | 0         | 7200                |       | 0         | 10800               |       | 0         |



**FAIRBROTHER**  
GEOTECHNICAL ENGINEERING


|                     |                                    |    |   |
|---------------------|------------------------------------|----|---|
| CONTRACT            | Parcels No. 5000 S.E. 1/4 N.W. 1/4 |    |   |
| CONTRACT NUMBER     | J1085                              |    |   |
| CONSULTING ENGINEER | J. G. Alkin                        |    |   |
| SUPERVISOR          | Neville                            |    |   |
| SHEET               | 1                                  | OF | 1 |

**DYNAMIC PROBE SUPER HEAVY**  
SITE DPSH REPORT

QA240

|              |                                  |      |          |
|--------------|----------------------------------|------|----------|
| DPSH- NUMBER | 14.                              | DATE | 6-12-23. |
| REMARKS      | No Penetration at 4.90 to 5.00 m |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|----------------|-----------|---------------------|-------|-----------|
| 100                 | 2     |           | 3700                | 10             |           | 7300                |       |           |
| 200                 | 1     |           | 3800                | 12             |           | 7400                |       |           |
| 300                 | 1     | 0         | 3900                | 13             | 0         | 7500                |       | 0         |
| 400                 | 3     |           | 4000                | 13             |           | 7600                |       |           |
| 500                 | 13    |           | 4100                | 14             |           | 7700                |       |           |
| 600                 | 7     | 0         | 4200                | 17             | 0         | 7800                |       | 0         |
| 700                 | 4     |           | 4300                | 23             |           | 7900                |       |           |
| 800                 | 4     |           | 4400                | 15             |           | 8000                |       |           |
| 900                 | 6     | 0         | 4500                | 13             | 0         | 8100                |       | 0         |
| 1000                | 6     |           | 4600                | 10             |           | 8200                |       |           |
| 1100                | 4     |           | 4700                | 9              |           | 8300                |       |           |
| 1200                | 7     | 0         | 4800                | 30             | 0         | 8400                |       | 0         |
| 1300                | 5     |           | 4900                | 42.            |           | 8500                |       |           |
| 1400                | 2     |           | 5000                | No Penetration |           | 8600                |       |           |
| 1500                | 2     | 0         | 5100                |                | 0         | 8700                |       | 0         |
| 1600                | 2     |           | 5200                |                |           | 8800                |       |           |
| 1700                | 1     |           | 5300                |                |           | 8900                |       |           |
| 1800                | 2     | 0         | 5400                |                | 0         | 9000                |       | 0         |
| 1900                | 2     |           | 5500                |                |           | 9100                |       |           |
| 2000                | 1     |           | 5600                |                |           | 9200                |       |           |
| 2100                | 2     | 0         | 5700                |                | 0         | 9300                |       | 0         |
| 2200                | 3     |           | 5800                |                |           | 9400                |       |           |
| 2300                | 5     |           | 5900                |                |           | 9500                |       |           |
| 2400                | 7     | 0         | 6000                |                | 0         | 9600                |       | 0         |
| 2500                | 5     |           | 6100                |                |           | 9700                |       |           |
| 2600                | 4     |           | 6200                |                |           | 9800                |       |           |
| 2700                | 5     | 0         | 6300                |                | 0         | 9900                |       | 0         |
| 2800                | 7     |           | 6400                |                |           | 10000               |       |           |
| 2900                | 6     |           | 6500                |                |           | 10100               |       |           |
| 3000                | 8     | 0         | 6600                |                | 0         | 10200               |       | 0         |
| 3100                | 9     |           | 6700                |                |           | 10300               |       |           |
| 3200                | 7     |           | 6800                |                |           | 10400               |       |           |
| 3300                | 6     | 0         | 6900                |                | 0         | 10500               |       | 0         |
| 3400                | 7     |           | 7000                |                |           | 10600               |       |           |
| 3500                | 9     |           | 7100                |                |           | 10700               |       |           |
| 3600                | 9     | 0         | 7200                |                | 0         | 10800               |       | 0         |

**FAIRBROTHER**

GEOTECHNICAL ENGINEERING

|                     |                            |    |   |
|---------------------|----------------------------|----|---|
| CONTRACT            | Parrkerville Somerset West |    |   |
| CONTRACT NUMBER     | 51085                      |    |   |
| CONSULTING ENGINEER | SA Africa                  |    |   |
| SUPERVISOR          | New.                       |    |   |
| SHEET               | 1                          | OF | 1 |

## DYNAMIC PROBE SUPER HEAVY

### SITE DPSH REPORT

QA240

|              |                              |      |          |
|--------------|------------------------------|------|----------|
| DPSH- NUMBER | 15                           | DATE | 4.12.23. |
| REMARKS      | No Penetration at 420 to 430 |      |          |

| PENETRATION<br>(mm) | BLOWS | BLOWS 300 | PENETRATION<br>(mm) | BLOWS          | BLOWS 300 | PENETRATION<br>(mm) | BLOWS | BLOWS 300 |
|---------------------|-------|-----------|---------------------|----------------|-----------|---------------------|-------|-----------|
| 100                 | 3     |           | 3700                | 6              |           | 7300                |       |           |
| 200                 | 4     |           | 3800                | 7              |           | 7400                |       |           |
| 300                 | 2     | 0         | 3900                | 8              | 0         | 7500                |       | 0         |
| 400                 | 3     |           | 4000                | 13             |           | 7600                |       |           |
| 500                 | 3     |           | 4100                | 26             |           | 7700                |       |           |
| 600                 | 3     | 0         | 4200                | 40             | 0         | 7800                |       | 0         |
| 700                 | 4     |           | 4300                | No Penetration |           |                     | 7900  |           |
| 800                 | 4     |           | 4400                |                |           | 8000                |       |           |
| 900                 | 4     | 0         | 4500                |                | 0         | 8100                |       | 0         |
| 1000                | 6     |           | 4600                |                |           | 8200                |       |           |
| 1100                | 4     |           | 4700                |                |           | 8300                |       |           |
| 1200                | 5     | 0         | 4800                |                | 0         | 8400                |       | 0         |
| 1300                | 4     |           | 4900                |                |           | 8500                |       |           |
| 1400                | 4     |           | 5000                |                |           | 8600                |       |           |
| 1500                | 4     | 0         | 5100                |                | 0         | 8700                |       | 0         |
| 1600                | 5     |           | 5200                |                |           | 8800                |       |           |
| 1700                | 7     |           | 5300                |                |           | 8900                |       |           |
| 1800                | 9     | 0         | 5400                |                | 0         | 9000                |       | 0         |
| 1900                | 8     |           | 5500                |                |           | 9100                |       |           |
| 2000                | 6     |           | 5600                |                |           | 9200                |       |           |
| 2100                | 7     | 0         | 5700                |                | 0         | 9300                |       | 0         |
| 2200                | 5     |           | 5800                |                |           | 9400                |       |           |
| 2300                | 5     |           | 5900                |                |           | 9500                |       |           |
| 2400                | 4     | 0         | 6000                |                | 0         | 9600                |       | 0         |
| 2500                | 4     |           | 6100                |                |           | 9700                |       |           |
| 2600                | 3     |           | 6200                |                |           | 9800                |       |           |
| 2700                | 3     | 0         | 6300                |                | 0         | 9900                |       | 0         |
| 2800                | 3     |           | 6400                |                |           | 10000               |       |           |
| 2900                | 2     |           | 6500                |                |           | 10100               |       |           |
| 3000                | 5     | 0         | 6600                |                | 0         | 10200               |       | 0         |
| 3100                | 5     |           | 6700                |                |           | 10300               |       |           |
| 3200                | 4     |           | 6800                |                |           | 10400               |       |           |
| 3300                | 6     | 0         | 6900                |                | 0         | 10500               |       | 0         |
| 3400                | 8     |           | 7000                |                |           | 10600               |       |           |
| 3500                | 7     |           | 7100                |                |           | 10700               |       |           |
| 3600                | 6     | 0         | 7200                |                | 0         | 10800               |       | 0         |

## *Appendix E: Laboratory Test Results*



Client: **JG Afrika (Pty) Ltd**

Project: Pardevlei Site

Attention: Mr T Hlongwane

Your Ref. No: -

Date Reported 16/01/2024

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### Test Requested

1 x FOUNDATION INDICATOR

### Site Sampling and Materials Information

Sampling Method

Specimens delivered to Steyn Wilson Laboratory.

Environmental Condition

Sunny

Deviation from the prescribed test method

No deviation from standard test method.

Responsibility of information disclaimer

The sample information was received from the customer. Results apply to the sample as received from the Customer.

### **FINAL REPORT**

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

Yours Faithfully

STEYN-WILSON LABORATORIES (PTY) LTD

### Remarks:

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples where subjected and analysed according to ASTM.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.

Mr. R. Wilson  
Technical Signatory

**DIRECTORS:** Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Customer : **JG Afrika (Pty) Ltd**

[REDACTED]

Project : **Pardevlei Site**

Date Received : **07/12/2023**

Date Reported : **16/01/2024**

Req. Number : **-**

Date Sampled: **07/12/2023**

Attention : **Mr T Hlongwane**

### FOUNDATION INDICATOR ASTM D422

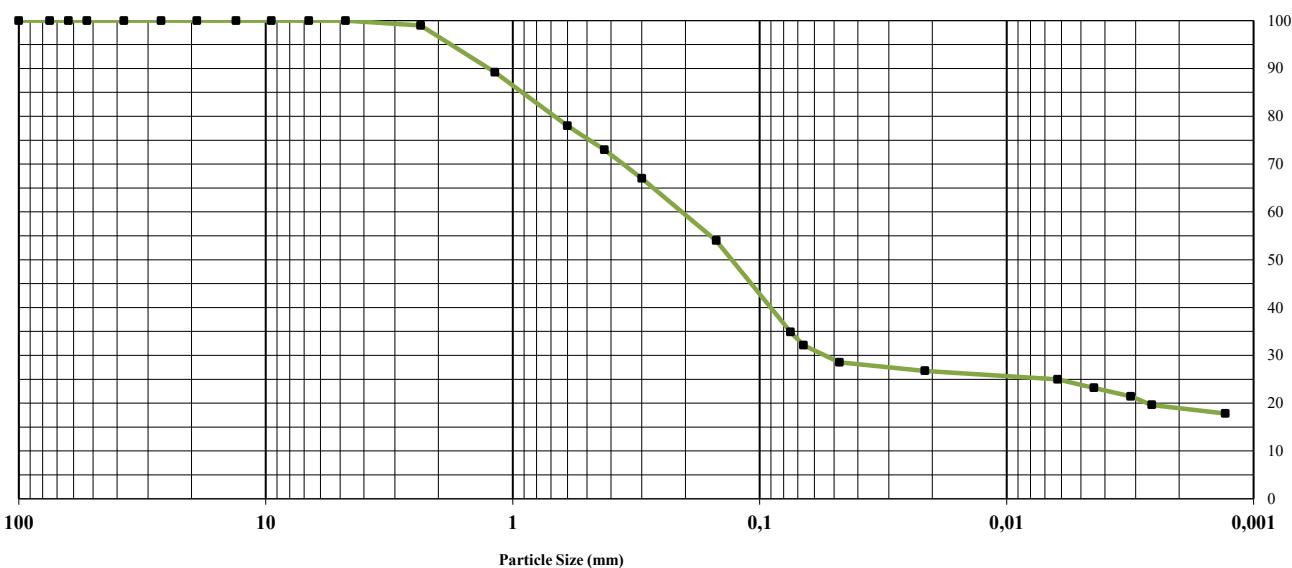
|                       |                             |  |                |                  |                           |                                 |
|-----------------------|-----------------------------|--|----------------|------------------|---------------------------|---------------------------------|
| Material Description: | Sandy Clay - Residual Shale |  | Sample Number: | 32614/16         |                           |                                 |
| Position:             | TP30                        |  |                | Liquid Limit     | Cassgranda SANS 3001 GR12 | 39,6                            |
| Depth:                | 0,60-2,20m                  |  |                | Plasticity Index | 17,6                      | Linear Shrinkage<br>Insitu M/C% |

**PH (TMH1 A20)**

**(TMH1 A21T)  
Conductivity  
s.m<sup>-1</sup>**

**SG (TMH1 A12T)\***

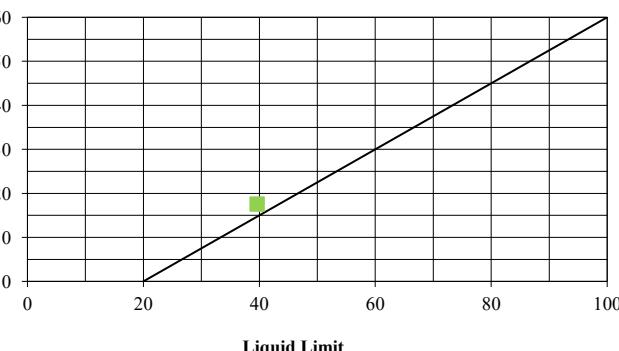
**2,615**


### SIEVE ANALYSIS (TMH 1 A1a)\*

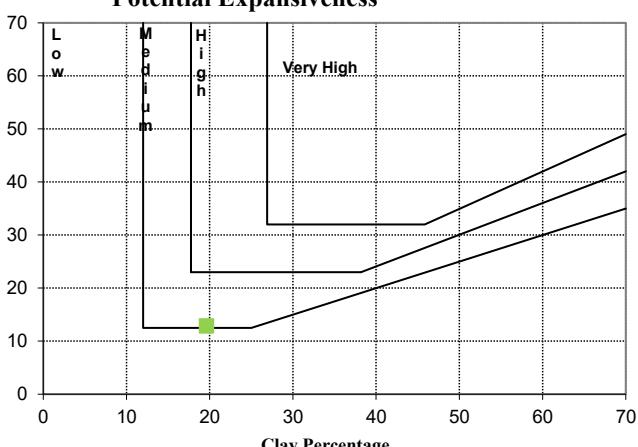
|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,066 | 0,048 | 0,021 | 0,006 | 0,004 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 100 | 100 | 100  | 99   | 89,2 | 78   | 73    | 67    | 54    | 34,9  | 32,11 | 28,54 | 26,76 | 24,98 | 23,19 | 21,41 | 19,62 | 17,84 |

% Passing

### Particle Size Distribution


Cumulative percentage Passing




% Gravel      % Sand      66      % Silt      14      % Clay      20

### Plasticity Chart A Line

Plasticity Index



Plasticity Index



NOTE: All tests marked with (\*) means that those test methods are not accredited.



Client: **JG Afrika (Pty) Ltd**  
 Project: Pardevlei Site  
 Attention: Mr T Hlongwane  
 Your Ref. No: -  
 Date Reported 16/01/2024

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### **Test Requested**

4 x FOUNDATION INDICATOR

### **Site Sampling and Materials Information**

Sampling Method

Specimens delivered to Steyn Wilson Laboratory.

Environmental Condition

Sunny

Deviation from the prescribed test method

No deviation from standard test method.

Responsibility of information disclaimer

The sample information was received from the customer. Results apply to the sample as received from the Customer.

### **FINAL REPORT**

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

**Yours Faithfully**

STEYN-WILSON LABORATORIES (PTY) LTD

### **Remarks:**

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to ASTM.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.



**Mr. R.Wilson**  
**Technical Signatory**

**DIRECTORS:** Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Customer : **JG Afrika (Pty) Ltd**

[REDACTED]

Project : **Pardevlei Site**

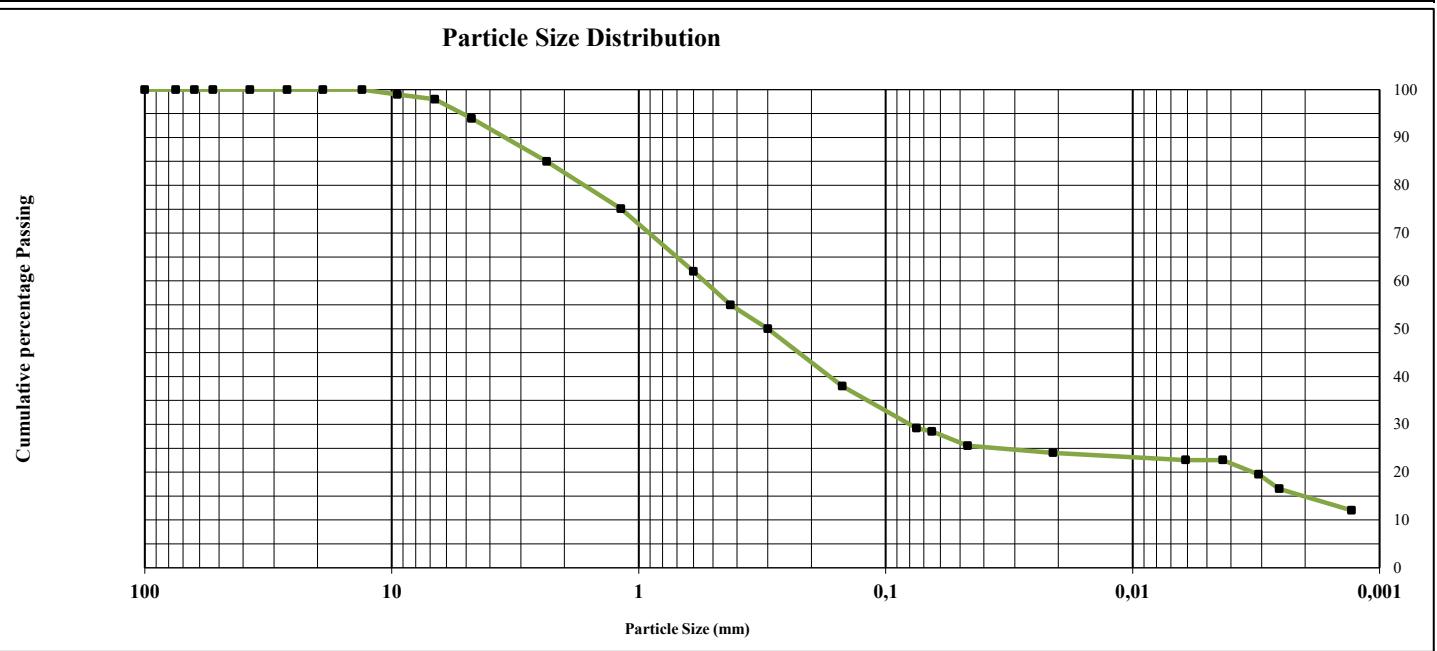
Date Received : **07/12/2023**

Date Reported : **16/01/2024**

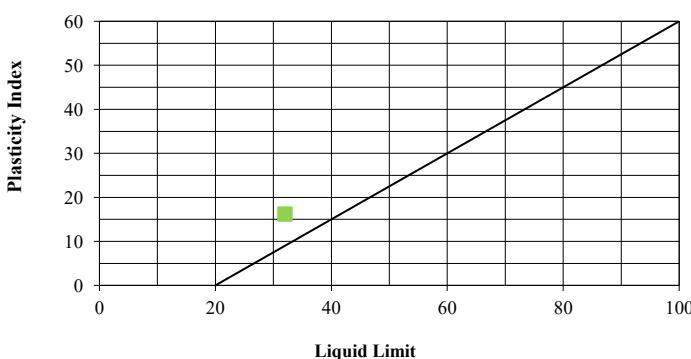
Req. Number : **-**

Date Sampled: **07/12/2023**

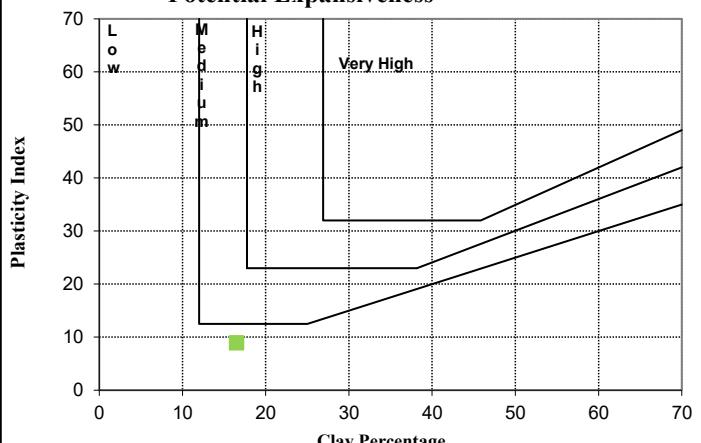
Attention : **Mr T Hlongwane**


### FOUNDATION INDICATOR ASTM D422

|                       |                             |  |                                                  |                  |                           |       |
|-----------------------|-----------------------------|--|--------------------------------------------------|------------------|---------------------------|-------|
| Material Description: | Sandy Clay - Residual Shale |  | Sample Number:                                   | 32614/10         |                           |       |
| Position:             | TP20                        |  |                                                  | Liquid Limit     | Cassgranda SANS 3001 GR12 |       |
| Depth:                | 0,5m                        |  |                                                  | Plasticity Index |                           |       |
|                       | PH (TMH1 A20)               |  | (TMH1 A21T)<br>Conductivity<br>s.m <sup>-1</sup> |                  | SG (TMH1 A12T)*           | 2,548 |
|                       |                             |  |                                                  |                  |                           |       |


### SIEVE ANALYSIS (TMH 1 A1a)\*

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,065 | 0,047 | 0,021 | 0,006 | 0,004 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 99  | 98  | 94   | 85   | 75,1 | 62   | 55    | 50    | 38    | 29,2  | 28,54 | 25,53 | 24,03 | 22,53 | 22,53 | 19,53 | 16,52 | 12,02 |


% Passing



### Plasticity Chart A Line

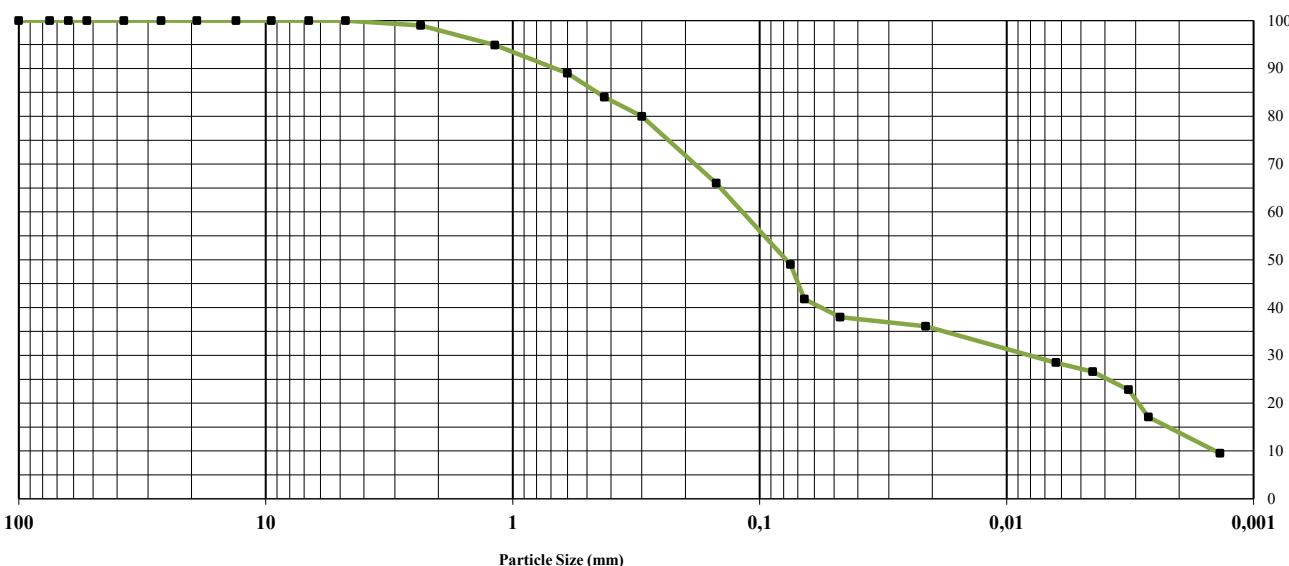


### Potential Expansiveness



NOTE: All tests marked with (\*) means that those test methods are not accredited.

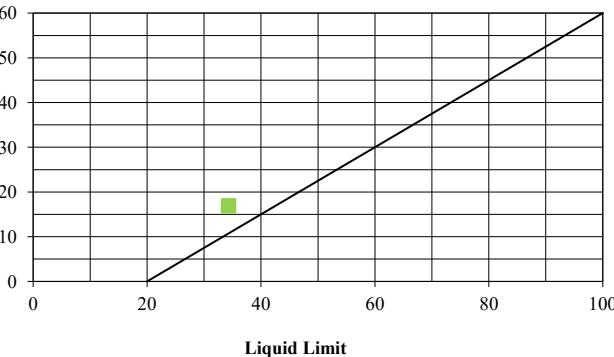
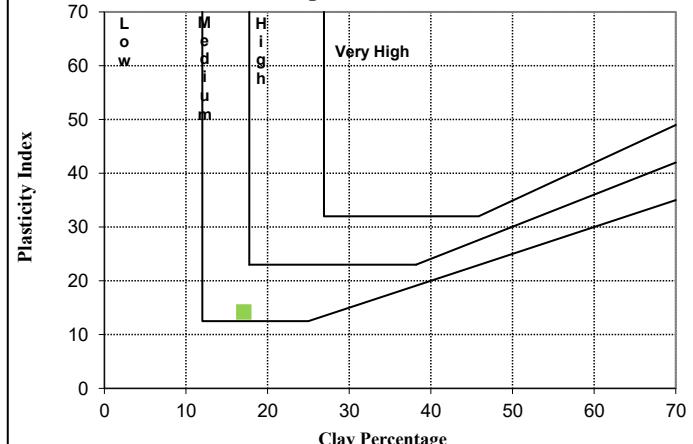
Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)Customer : **JG Afrika (Pty) Ltd**Project : **Pardevlei Site**Date Received : **07/12/2023**Date Reported : **16/01/2024**Req. Number : **-**Attention : **Mr T Hlongwane****FOUNDATION INDICATOR ASTM D422**


|                       |                             |  |                                        |             |                  |
|-----------------------|-----------------------------|--|----------------------------------------|-------------|------------------|
| Material Description: | Sandy Clay - Residual Shale |  | Sample Number:                         | 32614/13    |                  |
| Position:             | TP26                        |  | Liquid Limit Cassgranda SANS 3001 GR12 | <b>34,3</b> | Linear Shrinkage |
| Depth:                | 1,20-2,90m                  |  | Plasticity Index                       | <b>16,9</b> | Insitu M/C%      |

**PH (TMH1 A20)\*****(TMH1 A21T)\*  
Conductivity  
s.m<sup>-1</sup>****SG (TMH1 A12T)\*****2,58****SIEVE ANALYSIS (TMH 1 A1a)\*****HYDROMETER ASTM D422**

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,066 | 0,047 | 0,021 | 0,006 | 0,004 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 100 | 100 | 100  | 99   | 94,9 | 89   | 84    | 80    | 66    | 49    | 41,76 | 37,96 | 36,06 | 28,47 | 26,57 | 22,78 | 17,08 | 9,49  |

**% Passing****Particle Size Distribution**



Cumulative percentage Passing



|                 |  |               |           |               |           |               |           |
|-----------------|--|---------------|-----------|---------------|-----------|---------------|-----------|
| <b>% Gravel</b> |  | <b>% Sand</b> | <b>54</b> | <b>% Silt</b> | <b>29</b> | <b>% Clay</b> | <b>17</b> |
|-----------------|--|---------------|-----------|---------------|-----------|---------------|-----------|

**Plasticity Chart  
A Line**

Plasticity Index

**Potential Expansiveness**

NOTE: All tests marked with (\*) means that those test methods are not accredited.

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)Customer : **JG Afrika (Pty) Ltd**Project : **Pardevlei Site**Date Received : **07/12/2023**Date Reported : **16/01/2024**Req. Number : **-**Attention : **Mr T Hlongwane****FOUNDATION INDICATOR ASTM D422**

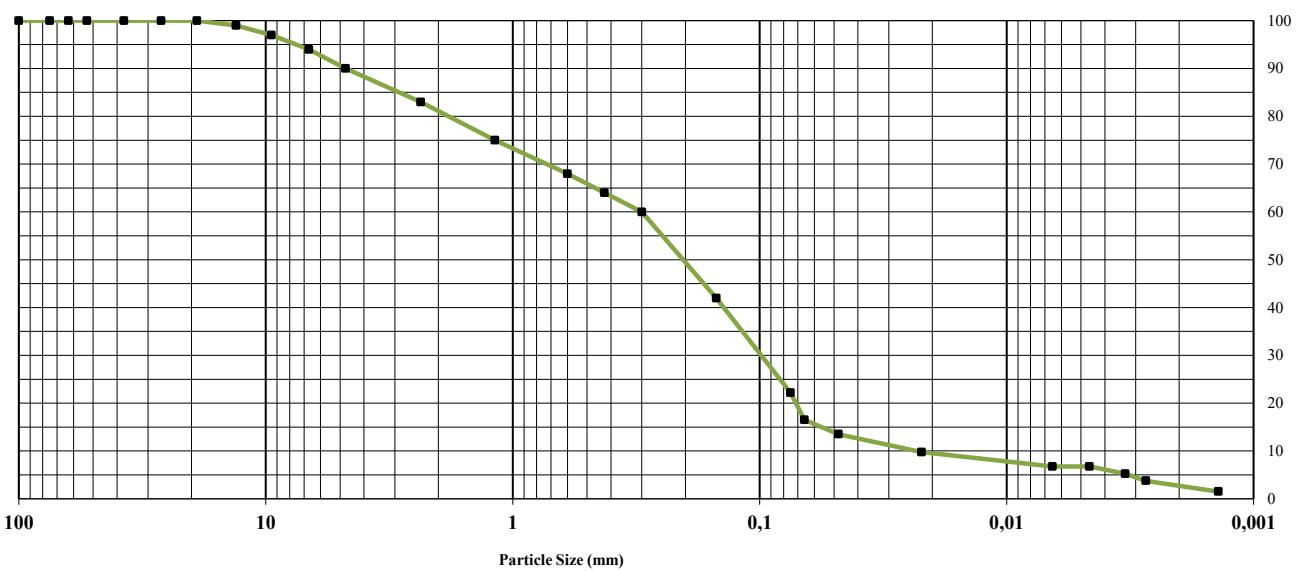
|                       |                        |  |                |                  |                              |                                 |
|-----------------------|------------------------|--|----------------|------------------|------------------------------|---------------------------------|
| Material Description: | Sandy silt - Colluvium |  | Sample Number: | 32614/14         |                              |                                 |
| Position:             | TP27                   |  |                | Liquid Limit     | Cassgranda<br>SANS 3001 GR12 | <b>N.P</b>                      |
| Depth:                | 0,5m                   |  |                | Plasticity Index | <b>N.P</b>                   | Linear Shrinkage<br>Insitu M/C% |

PH (TMH1 A20)\*

(TMH1 A21T)\*  
Conductivity  
s.m<sup>-1</sup>

SG (TMH1 A12T)\*

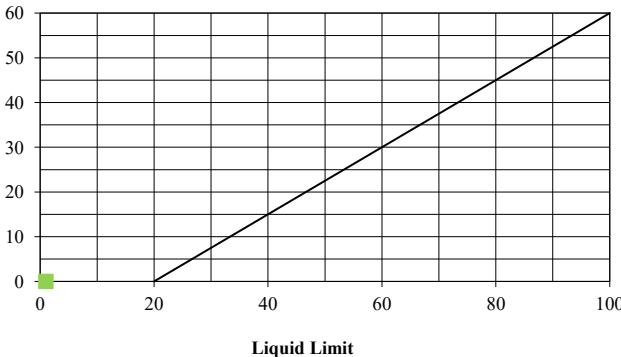
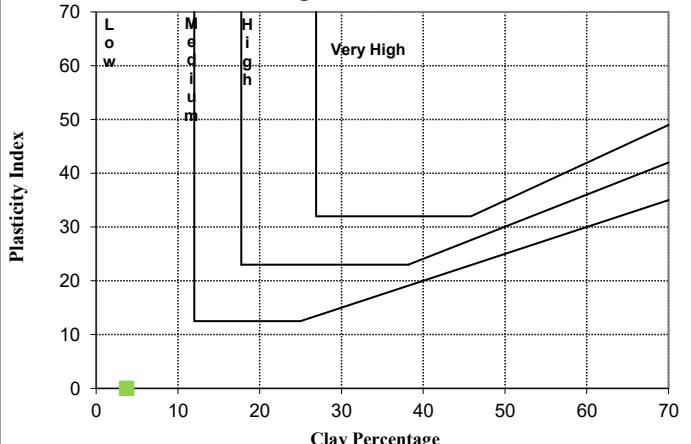
2,559


**SIEVE ANALYSIS (TMH 1 A1a)\*****HYDROMETER ASTM D422**

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,066 | 0,048 | 0,022 | 0,007 | 0,005 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 99   | 97  | 94  | 90   | 83   | 75   | 68   | 64    | 60    | 42    | 22,2  | 16,5  | 13,5  | 9,75  | 6,75  | 6,75  | 5,25  | 3,75  | 1,5   |

% Passing

**Particle Size Distribution**



Cumulative percentage Passing



% Gravel      10      % Sand      70      % Silt      16      % Clay      4

**Plasticity Chart**  
A Line

Plasticity Index

**Potential Expansiveness**

NOTE: All tests marked with (\*) means that those test methods are not accredited.



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Customer : **JG Afrika (Pty) Ltd**

[REDACTED]

Project : **Pardevlei Site**

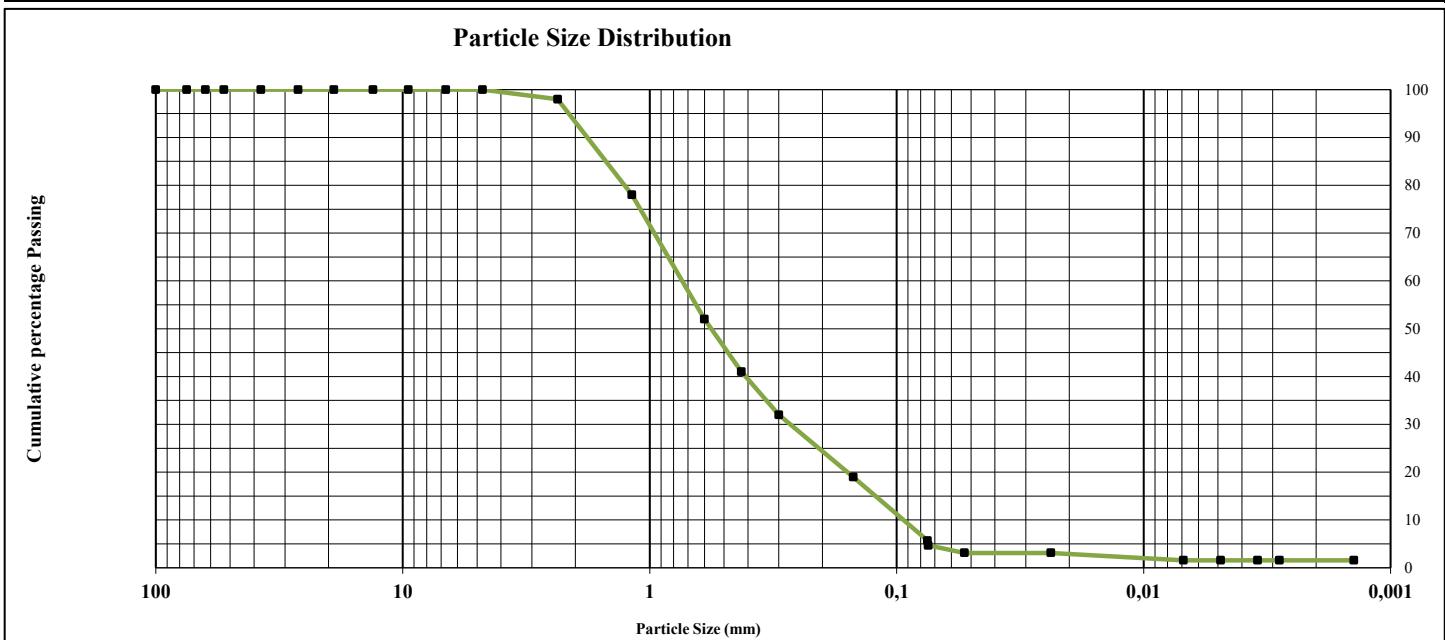
Date Received : **07/12/2023**

Date Reported : **16/01/2024**

Req. Number : **-**

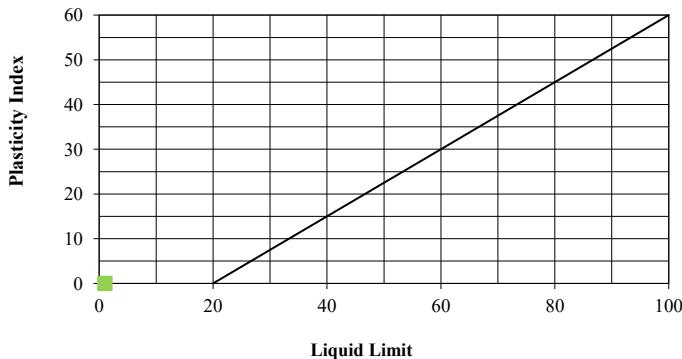
Attention : **Mr T Hlongwane**

### FOUNDATION INDICATOR ASTM D422

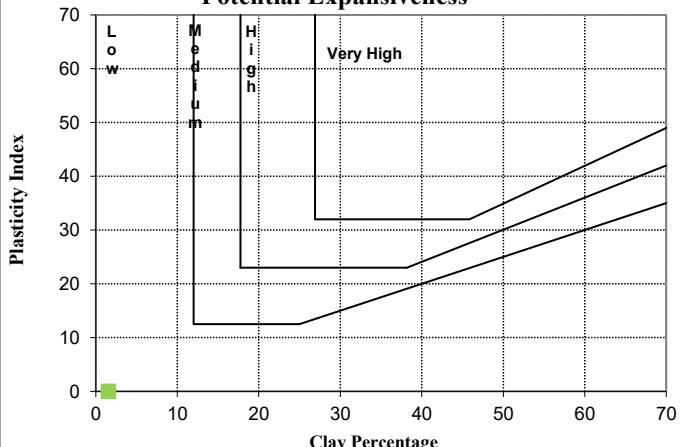

|                       |                                |                                                   |                           |                 |                  |
|-----------------------|--------------------------------|---------------------------------------------------|---------------------------|-----------------|------------------|
| Material Description: | TP29                           | Sample Number:                                    | 32614/15                  |                 |                  |
| Position:             | Silty Clay - Residual Calcrete | Liquid Limit                                      | Cassgranda SANS 3001 GR12 | <b>N.P</b>      | Linear Shrinkage |
| Depth:                | 1,70-2,20m                     | Plasticity Index                                  |                           | <b>N.P</b>      | Insitu M/C%      |
| PH (TMH1 A20)*        |                                | (TMH1 A21T)*<br>Conductivity<br>s.m <sup>-1</sup> |                           | SG (TMH1 A12T)* | 2,646            |

### SIEVE ANALYSIS (TMH 1 A1a)\*

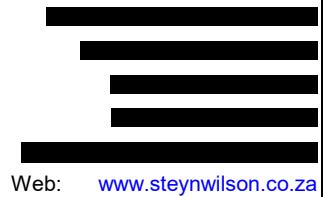
|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,075 | 0,053 | 0,024 | 0,007 | 0,005 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 100 | 100 | 100  | 98   | 78   | 52   | 41    | 32    | 19    | 5,7   | 4,68  | 3,12  | 3,12  | 1,56  | 1,56  | 1,56  | 1,56  | 1,56  |


% Passing

### HYDROMETER ASTM D422




% Gravel      % Sand      95      % Silt      4      % Clay      2


### Plasticity Chart A Line



### Potential Expansiveness



NOTE: All tests marked with (\*) means that those test methods are not accredited.



Client: **JG Afrika (Pty) Ltd**  
 Project: Pardevlei Site  
 Attention: Mr T Hlongwane  
 Your Ref. No: -  
 Date Reported 16/01/2024

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### **Test Requested**

4 x FOUNDATION INDICATOR

### **Site Sampling and Materials Information**

Sampling Method

Specimens delivered to Steyn Wilson Laboratory.

Environmental Condition

Sunny

Deviation from the prescribed test method

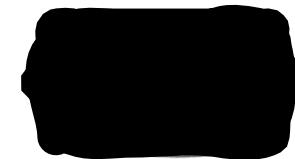
No deviation from standard test method.

Responsibility of information disclaimer

The sample information was received from the customer. Results apply to the sample as received from the Customer.

### **FINAL REPORT**

We would like to take this opportunity to thank you for your valued support.


Should you have any further enquiries please don't hesitate to contact me.

Yours Faithfully

STEYN-WILSON LABORATORIES (PTY) LTD

### **Remarks:**

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to ASTM.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.



**Mr. R.Wilson**  
**Technical Signatory**

**DIRECTORS:** Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Customer : **JG Afrika (Pty) Ltd**

[REDACTED]

Project : **Pardevlei Site**

Date Received : **07/12/2023**

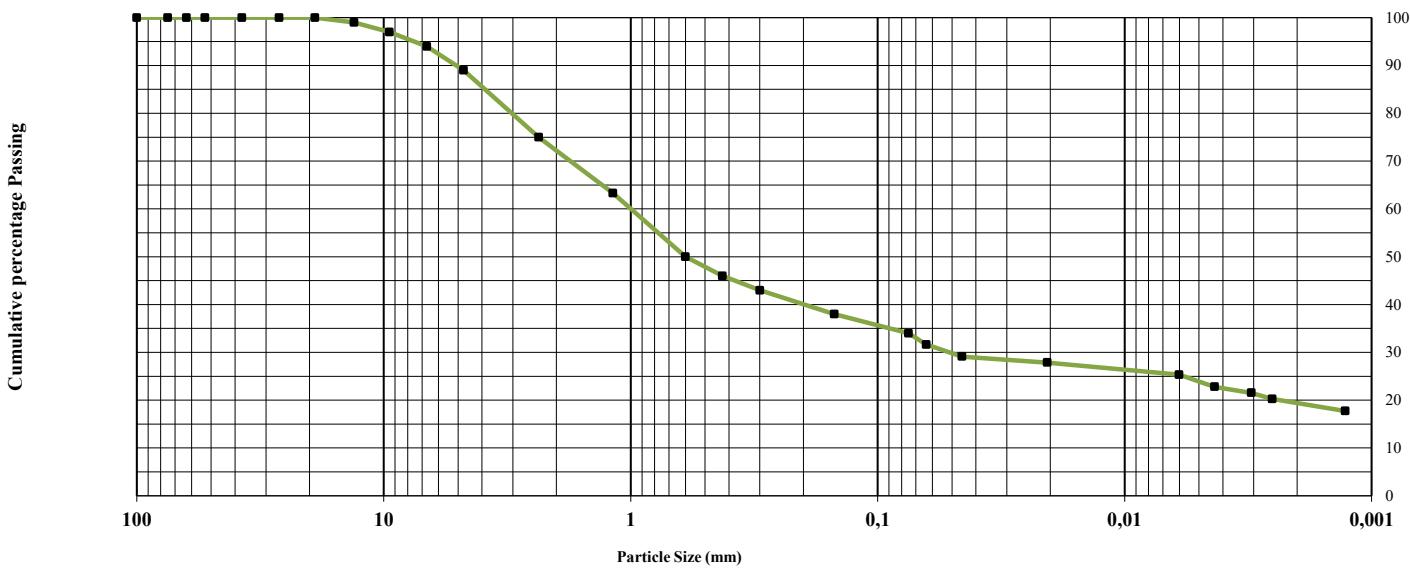
Date Reported : **16/01/2024**

Req. Number : **-**

Date Sampled: **07/12/2023**

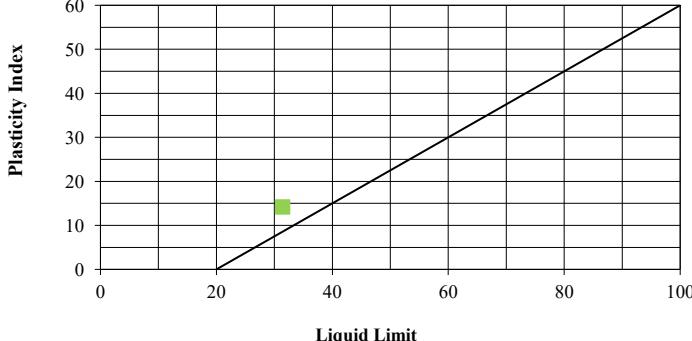
Attention : **Mr T Hlongwane**

### FOUNDATION INDICATOR ASTM D422

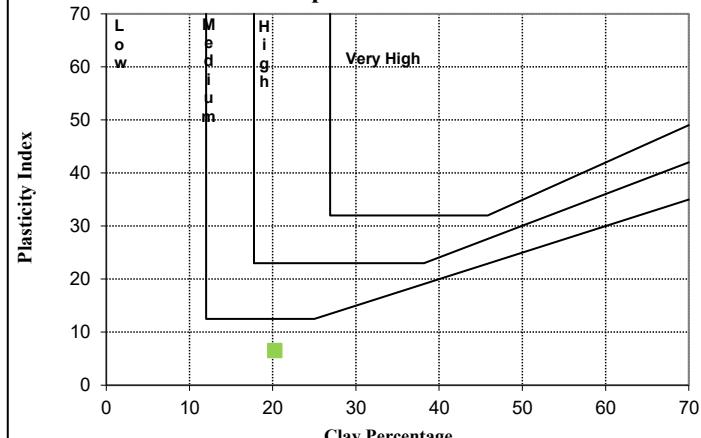

|                       |                             |  |                                                  |                  |                           |       |
|-----------------------|-----------------------------|--|--------------------------------------------------|------------------|---------------------------|-------|
| Material Description: | Sandy Clay - Residual Shale |  | Sample Number:                                   | 32614/2          |                           |       |
| Position:             | TP7                         |  |                                                  | Liquid Limit     | Cassgranda SANS 3001 GR12 |       |
| Depth:                | 0,30-1,70m                  |  |                                                  | Plasticity Index |                           |       |
|                       | PH (TMH1 A20)               |  | (TMH1 A21T)<br>Conductivity<br>s.m <sup>-1</sup> |                  | SG (TMH1 A12T)*           | 2,621 |
|                       |                             |  |                                                  |                  |                           |       |

### SIEVE ANALYSIS (TMH 1 A1a)\*

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,064 | 0,046 | 0,021 | 0,006 | 0,004 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 99   | 97  | 94  | 89   | 75   | 63,3 | 50   | 46    | 43    | 38    | 34    | 31,65 | 29,12 | 27,85 | 25,32 | 22,79 | 21,52 | 20,26 | 17,72 |


% Passing

### Particle Size Distribution




|          |    |        |    |        |    |        |    |
|----------|----|--------|----|--------|----|--------|----|
| % Gravel | 11 | % Sand | 56 | % Silt | 13 | % Clay | 20 |
|----------|----|--------|----|--------|----|--------|----|

### Plasticity Chart A Line



### Potential Expansiveness



NOTE: All tests marked with (\*) means that those test methods are not accredited.

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)Customer : **JG Afrika (Pty) Ltd**Project : **Pardevlei Site**Date Received : **07/12/2023**Date Reported : **16/01/2024**Req. Number : **-**Attention : **Mr T Hlongwane****FOUNDATION INDICATOR ASTM D422**

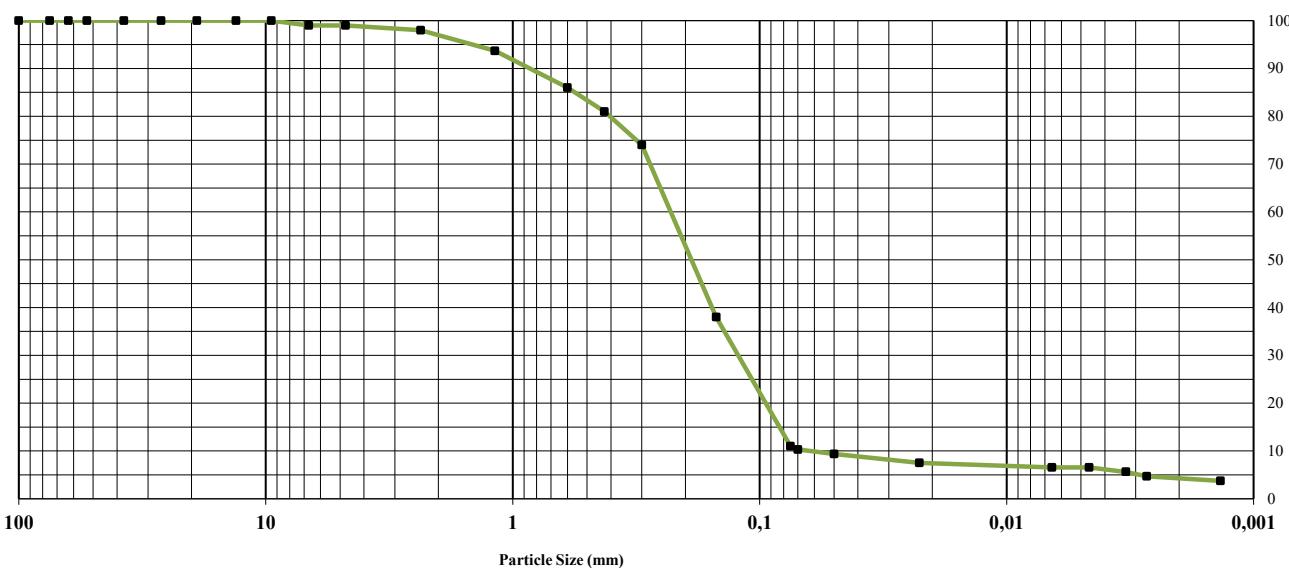
|                       |                        |  |                |                  |                              |                                 |
|-----------------------|------------------------|--|----------------|------------------|------------------------------|---------------------------------|
| Material Description: | Sandy Silt - Colluvium |  | Sample Number: | 32614/4          |                              |                                 |
| Position:             | TP12                   |  |                | Liquid Limit     | Cassgranda<br>SANS 3001 GR12 | <b>N.P</b>                      |
| Depth:                | 0,00-2,60m             |  |                | Plasticity Index | <b>N.P</b>                   | Linear Shrinkage<br>Insitu M/C% |

PH (TMH1 A20)\*

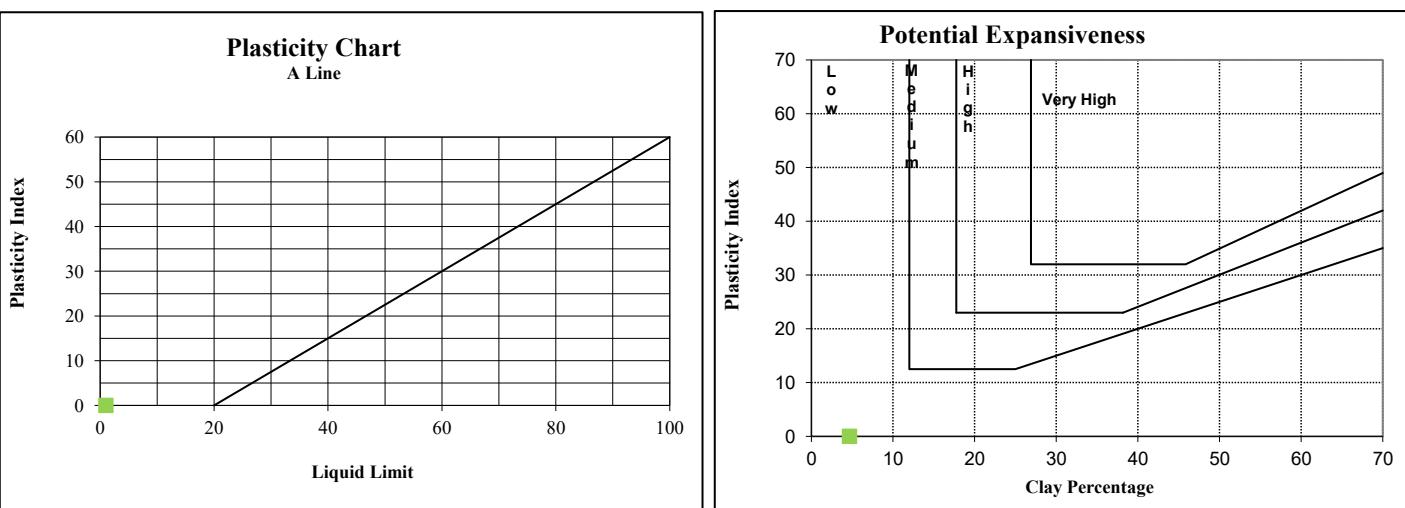
(TMH1 A21T)\*  
Conductivity  
s.m<sup>-1</sup>

SG (TMH1 A12T)\*

2,615


**SIEVE ANALYSIS (TMH 1 A1a)\***

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,070 | 0,050 | 0,023 | 0,007 | 0,005 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 100 | 99  | 99   | 98   | 93,7 | 86   | 81    | 74    | 38    | 11    | 10,31 | 9,37  | 7,496 | 6,559 | 6,559 | 5,622 | 4,685 | 3,748 |


% Passing

**Particle Size Distribution**

Cumulative percentage Passing



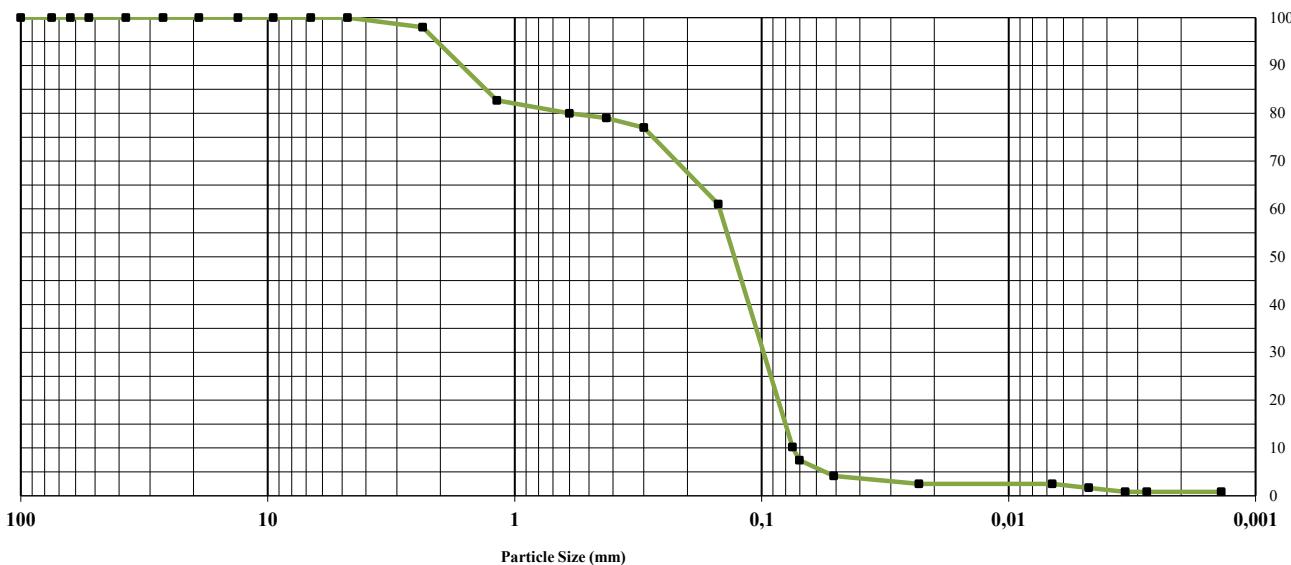
% Gravel      1      % Sand      88      % Silt      6      % Clay      5



NOTE: All tests marked with (\*) means that those test methods are not accredited.

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)Customer : **JG Afrika (Pty) Ltd**Project : **Pardevlei Site**Date Received : **07/12/2023**Date Reported : **16/01/2024**Req. Number : **-**Attention : **Mr T Hlongwane****FOUNDATION INDICATOR ASTM D422**

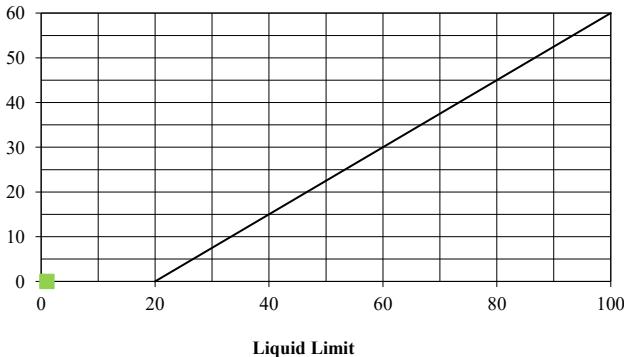
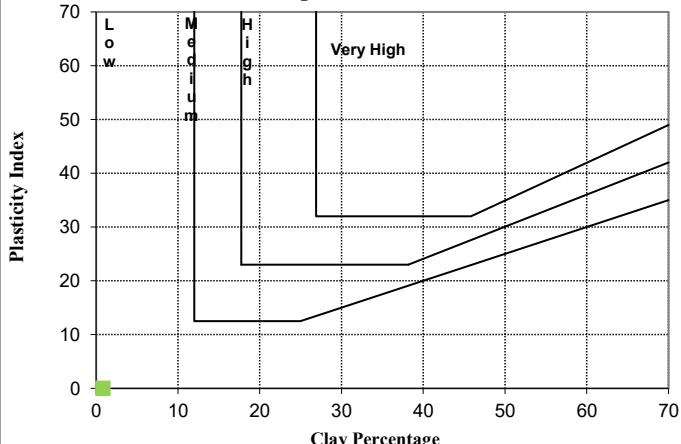
|                       |                        |                                                   |                |                  |                           |                                 |
|-----------------------|------------------------|---------------------------------------------------|----------------|------------------|---------------------------|---------------------------------|
| Material Description: | Silty Sand - Colluvium |                                                   | Sample Number: | 32614/7          |                           |                                 |
| Position:             | TP16                   |                                                   |                | Liquid Limit     | Cassgranda SANS 3001 GR12 | <b>N.P</b>                      |
| Depth:                | 0,5m                   |                                                   |                | Plasticity Index | <b>N.P</b>                | Linear Shrinkage<br>Insitu M/C% |
| PH (TMH1 A20)*        |                        | (TMH1 A21T)*<br>Conductivity<br>s.m <sup>-1</sup> |                | SG (TMH1 A12T)*  | 2,634                     |                                 |


**SIEVE ANALYSIS (TMH 1 A1a)\***

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,070 | 0,051 | 0,023 | 0,007 | 0,005 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 100  | 100 | 100 | 100  | 98   | 82,7 | 80   | 79    | 77    | 61    | 10,2  | 7,443 | 4,135 | 2,481 | 2,481 | 1,654 | 0,827 | 0,827 | 0,827 |

% Passing

**Particle Size Distribution**



Cumulative percentage Passing



|          |  |        |    |        |   |        |   |
|----------|--|--------|----|--------|---|--------|---|
| % Gravel |  | % Sand | 91 | % Silt | 8 | % Clay | 1 |
|----------|--|--------|----|--------|---|--------|---|

**Plasticity Chart**  
A Line

Plasticity Index

**Potential Expansiveness**

NOTE: All tests marked with (\*) means that those test methods are not accredited.

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)Customer : **JG Afrika (Pty) Ltd**Project : **Pardevlei Site**Date Received : **07/12/2023**Date Reported : **16/01/2024**Req. Number : **-**Attention : **Mr T Hlongwane****FOUNDATION INDICATOR ASTM D422**

|                       |                              |                  |                           |            |                  |
|-----------------------|------------------------------|------------------|---------------------------|------------|------------------|
| Material Description: | TP18                         | Sample Number:   | 32614/8                   |            |                  |
| Position:             | Weathered Calcrete - Hardpan | Liquid Limit     | Cassgranda SANS 3001 GR12 | <b>N.P</b> | Linear Shrinkage |
| Depth:                | 0,5m                         | Plasticity Index |                           | <b>N.P</b> | Insitu M/C%      |

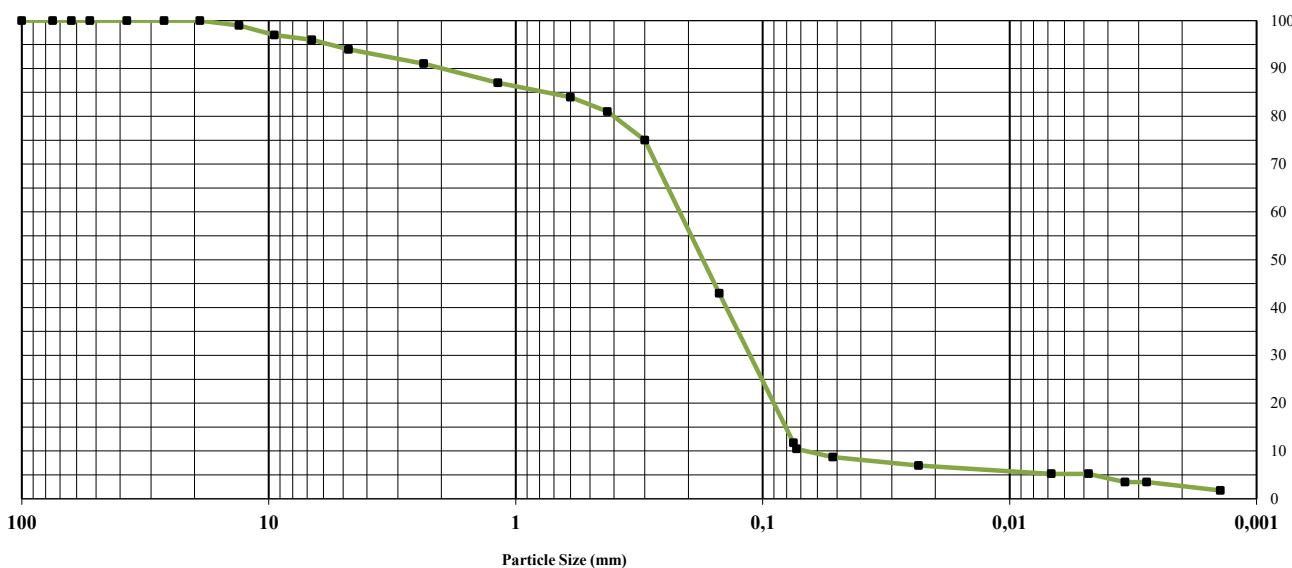
PH (TMH1 A20)\*

(TMH1 A21T)\*  
Conductivity  
s.m<sup>-1</sup>

SG (TMH1 A12T)\*

2,575

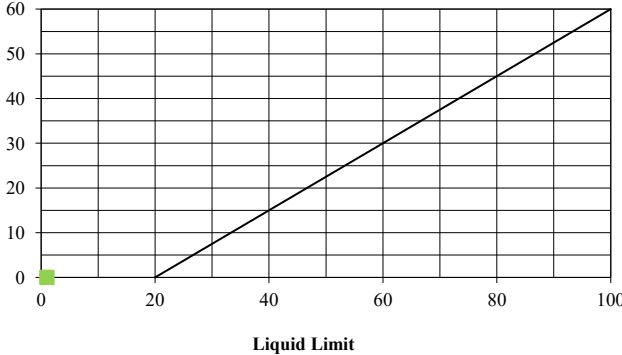
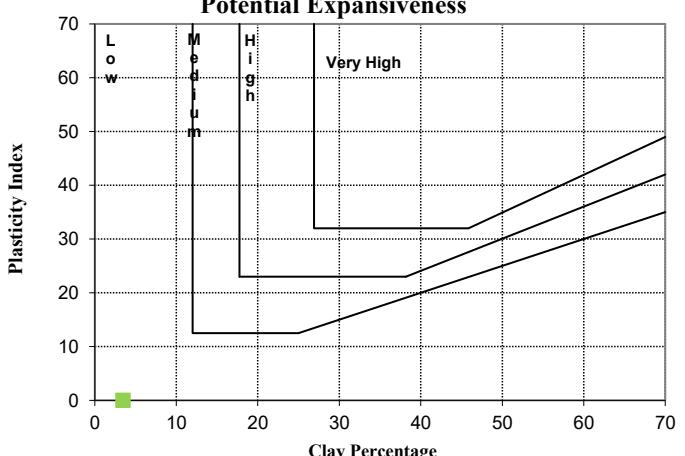
**SIEVE ANALYSIS (TMH 1 A1a)\***


% Passing

**HYDROMETER ASTM D422**

|     |     |     |     |      |      |      |      |     |     |      |      |      |      |       |       |       |       |       |       |       |       |       |       |       |       |
|-----|-----|-----|-----|------|------|------|------|-----|-----|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 100 | 75  | 63  | 53  | 37,5 | 26,5 | 19,0 | 13,2 | 9,5 | 6,7 | 4,75 | 2,36 | 1,18 | 0,60 | 0,425 | 0,300 | 0,150 | 0,075 | 0,073 | 0,052 | 0,023 | 0,007 | 0,005 | 0,003 | 0,003 | 0,001 |
| 100 | 100 | 100 | 100 | 100  | 100  | 100  | 99   | 97  | 96  | 94   | 91   | 87   | 84   | 81    | 75    | 43    | 11,7  | 10,44 | 8,7   | 6,96  | 5,22  | 5,22  | 3,48  | 3,48  | 1,74  |

**Particle Size Distribution**



Cumulative percentage Passing



|                 |          |               |           |               |          |               |          |
|-----------------|----------|---------------|-----------|---------------|----------|---------------|----------|
| <b>% Gravel</b> | <b>6</b> | <b>% Sand</b> | <b>83</b> | <b>% Silt</b> | <b>8</b> | <b>% Clay</b> | <b>3</b> |
|-----------------|----------|---------------|-----------|---------------|----------|---------------|----------|

**Plasticity Chart**  
A Line

Plasticity Index

**Potential Expansiveness**

NOTE: All tests marked with (\*) means that those test methods are not accredited.



**STEYN-WILSON  
LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



T0835

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Client: **JG Afrika (Pty) Ltd**

Project: **Paardevlei Site**

Attention: **Mr T Hlongwane**

Your Ref. No: **-**

Date Reported **22/01/2024**

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### Test Requested

### Site Sampling and Materials Information

1 x IND

*Sampling Method*      Sampled by CLIENT

*Environmental Condition*      Sunny

*Deviation from the prescribed test method*      No deviation from standard test method.

*Responsibility of information disclaimer*

The sample information was received from the customer. Results apply to the sample as received from the Customer.

### FINAL REPORT

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

Yours Faithfully

STEYN-WILSON LABORATORIES (PTY) LTD



**Mr. R. Wilson**

**Technical Signatory**

### Remarks:

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to SANS 3001.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.

**DIRECTORS:** **Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)**

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

## CIVIL ENGINEERING TESTING LABORATORIES

| JOB NO:                                                                                                                                       | SWL32614                                        | Your Ref        | -               | Date | 22/01/2024 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|-----------------|------|------------|
| CLIENT:                                                                                                                                       | JG Afrika (Pty) Ltd<br>[REDACTED]<br>[REDACTED] | PROJECT:        | Paardevlei Site |      |            |
| ATTENTION:                                                                                                                                    | Mr T Hlongwane                                  | BALANCE:        | AC1/0004        |      |            |
|                                                                                                                                               |                                                 | OVEN:           | AB1/0002        |      |            |
|                                                                                                                                               |                                                 | AUTO COMPACTOR: | AD1/0005        |      |            |
|                                                                                                                                               |                                                 | CBR PRESS:      | AA1/0001        |      |            |
| CBR REPORT - TMH5 MD1, MD2 / SANS 3001 GR1, PR5, GR10, GR12, GR20, GR30, GR40, AG10, AG4, AG14, TMH1 A20, TMH1 A21T, *COTO, SANS 3001 AG20/21 |                                                 |                 |                 |      |            |
| The unambiguous description of the sample/s as received are as follows :                                                                      |                                                 |                 |                 |      |            |
| SAMPLE No.                                                                                                                                    | 32614/11                                        | SPEC            |                 |      |            |
| HOLE No. / SV. / CHAINAGE                                                                                                                     | TP22                                            |                 |                 |      |            |
| ROAD No. OR NAME                                                                                                                              | Paardevlei Site                                 |                 |                 |      |            |
| LAYER TESTED / SAMPLED FROM                                                                                                                   | 0,80-1,30m                                      |                 |                 |      |            |
| DATE RECEIVED                                                                                                                                 | 07/12/2023                                      |                 |                 |      |            |
| CLIENTS MARKING                                                                                                                               | -                                               |                 |                 |      |            |
| DESCRIPTION OF SAMPLE (COLOUR & TYPE)                                                                                                         | Weathered Shale - Bedrock                       |                 |                 |      |            |
| REDUCTION FACTOR / RF CHECK                                                                                                                   | 0,2156                                          |                 |                 |      |            |
|                                                                                                                                               | 0,02                                            | < 1%            |                 |      |            |
| SIEVE ANALYSIS (mm)<br>SANS 3001 GR1                                                                                                          | 100,0                                           | 100             |                 |      |            |
|                                                                                                                                               | 75,0                                            | 93              |                 |      |            |
|                                                                                                                                               | 63,0                                            | 85              |                 |      |            |
|                                                                                                                                               | 53,0                                            | 72              |                 |      |            |
|                                                                                                                                               | 37,5                                            | 52              |                 |      |            |
|                                                                                                                                               | 28,0                                            | 39              |                 |      |            |
|                                                                                                                                               | 20,0                                            | 26              |                 |      |            |
|                                                                                                                                               | 14,0                                            | 17              |                 |      |            |
|                                                                                                                                               | 5,00                                            | 10              |                 |      |            |
|                                                                                                                                               | 2,00                                            | 6               |                 |      |            |
|                                                                                                                                               | 0,425                                           | 3               |                 |      |            |
|                                                                                                                                               | 0,075                                           | 1               |                 |      |            |
| ACV                                                                                                                                           | SANS AG10                                       | %               |                 |      |            |
| 10 % FACT                                                                                                                                     |                                                 | kN              |                 |      |            |
| 10 % FACT Wet / Dry ratio                                                                                                                     |                                                 | %               |                 |      |            |
| FLAKINESS INDEX                                                                                                                               | SANS AG4                                        | %               |                 |      |            |
| FRACTURED FACES                                                                                                                               |                                                 | %               |                 |      |            |
| ATTERBERG LIMITS<br>SANS 3001 GR10, GR12                                                                                                      | LL% - 0,425mm                                   |                 |                 |      |            |
|                                                                                                                                               | P.I. - 0,425mm                                  |                 |                 |      |            |
|                                                                                                                                               | LS% - 0,425mm                                   |                 |                 |      |            |
|                                                                                                                                               | P.I. - 0,075mm                                  |                 |                 |      |            |
|                                                                                                                                               | GM                                              | 2,90            |                 |      |            |
| SOIL-MORTAR PERCENTAGES<br>SANS 3001 PR5                                                                                                      | Coarse sand                                     | 52              |                 |      |            |
|                                                                                                                                               | Fine sand                                       | 22              |                 |      |            |
|                                                                                                                                               | Coarse fine sand                                | 11              |                 |      |            |
|                                                                                                                                               | Medium fine sand                                | 6               |                 |      |            |
|                                                                                                                                               | Fine fine sand                                  | 5               |                 |      |            |
|                                                                                                                                               | Silt and clay                                   | 26              |                 |      |            |
|                                                                                                                                               | Coarse sand ratio                               | 0,5             |                 |      |            |
| MOD AASHTO<br>SANS 3001 GR30                                                                                                                  | OMC                                             | %               |                 |      |            |
|                                                                                                                                               | MDD                                             | (kg/m³)         |                 |      |            |
| APPARENT & BULK DENSITY / WATER ABSORPTION<br>SANS 3001 AG20/21                                                                               | AD<br>BD<br>WA                                  | (kg/m³)         |                 |      |            |
|                                                                                                                                               |                                                 | (kg/m³)         |                 |      |            |
|                                                                                                                                               |                                                 | %               |                 |      |            |
| C.B.R.<br>SANS 3001 GR40                                                                                                                      | COMP MC                                         | %               |                 |      |            |
|                                                                                                                                               | SWELL                                           | %               |                 |      |            |
|                                                                                                                                               | 100%                                            |                 |                 |      |            |
|                                                                                                                                               | 98%                                             |                 |                 |      |            |
|                                                                                                                                               | 97%                                             |                 |                 |      |            |
|                                                                                                                                               | 95%                                             |                 |                 |      |            |
|                                                                                                                                               | 93%                                             |                 |                 |      |            |
|                                                                                                                                               | 90%                                             |                 |                 |      |            |
| pH                                                                                                                                            | TMH1 A20                                        | %               |                 |      |            |
| Conductivity                                                                                                                                  | TMH1 A21T                                       | (S/m)           |                 |      |            |
| Water Soluble Sulfates                                                                                                                        | *SANS 5850-1                                    | %               |                 |      |            |
| Acid Soluble Sulfates                                                                                                                         | *SANS 5850-2                                    | %               |                 |      |            |
| Durability Mill Index (max)                                                                                                                   | SANS AG16                                       | -               |                 |      |            |
| % passing 0,425mm sieve after Test                                                                                                            |                                                 | %               |                 |      |            |

NOTE : All tests marked with (\*) means that those test methods are not accredited.



**STEYN-WILSON  
LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Client: **JG Afrika (Pty) Ltd**

Project: **Paardevlei Site**

Attention: **Mr T Hlongwane**

Your Ref. No: **-**

Date Reported **22/01/2024**

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### Test Requested

### Site Sampling and Materials Information

2 x MDD / CBR /IND

*Sampling Method*

*Sampled by CLIENT*

*Environmental Condition*

*Sunny*

*Deviation from the prescribed test method*

*No deviation from standard test method.*

*Responsibility of information disclaimer*

*The sample information was received from the customer. Results apply to the sample as received from the Customer.*

### FINAL REPORT

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

Yours Faithfully

STEYN-WILSON LABORATORIES (PTY) LTD



**Mr. R. Wilson**

**Technical Signatory**

### Remarks:

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to SANS 3001.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.

**DIRECTORS:** **Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)**

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

## CIVIL ENGINEERING TESTING LABORATORIES

| JOB NO:                                                                                                                                       | SWL32614                                        |           | Your Ref                    | -               | Date            | 22/01/2024 |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|-----------------------------|-----------------|-----------------|------------|------|
| CLIENT:                                                                                                                                       | JG Afrika (Pty) Ltd<br>[REDACTED]<br>[REDACTED] |           |                             | PROJECT:        | Paardevlei Site |            |      |
| ATTENTION:                                                                                                                                    | Mr T Hlongwane                                  |           |                             | BALANCE:        | AC1/0004        |            |      |
|                                                                                                                                               |                                                 |           |                             | OVEN:           | AB1/0002        |            |      |
|                                                                                                                                               |                                                 |           |                             | AUTO COMPACTOR: | AD1/0005        |            |      |
|                                                                                                                                               |                                                 |           |                             | CBR PRESS:      | AA1/0001        |            |      |
| CBR REPORT - TMH5 MD1, MD2 / SANS 3001 GR1, PR5, GR10, GR12, GR20, GR30, GR40, AG10, AG4, AG14, TMH1 A20, TMH1 A21T, *COTO, SANS 3001 AG20/21 |                                                 |           |                             |                 |                 |            |      |
| The unambiguous description of the sample/s as received are as follows :                                                                      |                                                 |           |                             |                 |                 |            |      |
| SAMPLE No.                                                                                                                                    | 32614/9                                         | SPEC      | 32614/12                    | SPEC            |                 |            | SPEC |
| HOLE No. / SV. / CHAINAGE                                                                                                                     | TP19                                            | COTO - G8 | TP24                        |                 |                 |            |      |
| ROAD No. OR NAME                                                                                                                              | Paardevlei Site                                 |           | Paardevlei Site             |                 |                 |            |      |
| LAYER TESTED / SAMPLED FROM                                                                                                                   | 0,90-2,0m                                       |           | 0,90-3,0m                   |                 |                 |            |      |
| DATE RECEIVED                                                                                                                                 | 17/02/2024                                      |           | 17/02/2024                  |                 |                 |            |      |
| CLIENTS MARKING                                                                                                                               | -                                               |           | -                           |                 |                 |            |      |
| DESCRIPTION OF SAMPLE (COLOUR & TYPE)                                                                                                         | Silty Sand - Aeolian                            |           | Sandy Clay - Residual Shale |                 |                 |            |      |
| REDUCTION FACTOR / RF CHECK                                                                                                                   |                                                 | 1,0000    |                             | 1,0000          |                 |            |      |
|                                                                                                                                               |                                                 | 0,08      | < 1%                        | 0,13            | < 1%            |            | < 1% |
| SIEVE ANALYSIS (mm)<br>SANS 3001 GR1                                                                                                          | 100,0                                           | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 75,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 63,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 53,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 37,5                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 28,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 20,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 14,0                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 5,00                                            | 100       | -                           | 100             |                 |            |      |
|                                                                                                                                               | 2,00                                            | 100       | -                           | 99              |                 |            |      |
|                                                                                                                                               | 0,425                                           | 63        | -                           | 89              |                 |            |      |
| ACV                                                                                                                                           | SANS AG10                                       | %         |                             |                 |                 |            |      |
|                                                                                                                                               |                                                 | kN        |                             |                 |                 |            |      |
| 10 % FACT                                                                                                                                     | SANS AG4                                        | %         |                             |                 |                 |            |      |
| 10 % FACT Wet / Dry ratio                                                                                                                     |                                                 |           |                             |                 |                 |            |      |
| FLAKINESS INDEX                                                                                                                               | *COTO                                           | %         |                             |                 |                 |            |      |
| FRACTURED FACES                                                                                                                               |                                                 | %         |                             |                 |                 |            |      |
| ATTERBERG LIMITS<br>SANS 3001 GR10, GR12                                                                                                      | LL% - 0,425mm                                   | N.P       | -                           | 48,5            |                 |            |      |
|                                                                                                                                               | P.I. - 0,425mm                                  | N.P       | $\leq (3 \times GM) + 10$   | 27,7            |                 |            |      |
|                                                                                                                                               | LS% - 0,425mm                                   | 0,0       | -                           | 12,9            |                 |            |      |
|                                                                                                                                               | P.I. - 0,075mm                                  |           |                             |                 |                 |            |      |
|                                                                                                                                               | GM                                              | 1,28      | $0,75 \geq GM \leq 2,7$     | 0,53            |                 |            |      |
| SOIL-MORTAR PERCENTAGES<br>SANS 3001 PR5                                                                                                      | Coarse sand                                     | 36        |                             | 10              |                 |            |      |
|                                                                                                                                               | Fine sand                                       | 55        |                             | 31              |                 |            |      |
|                                                                                                                                               | Coarse fine sand                                | 38        |                             | 11              |                 |            |      |
|                                                                                                                                               | Medium fine sand                                | 11        |                             | 11              |                 |            |      |
|                                                                                                                                               | Fine fine sand                                  | 6         |                             | 9               |                 |            |      |
|                                                                                                                                               | Silt and clay                                   | 9         |                             | 60              |                 |            |      |
|                                                                                                                                               | Coarse sand ratio                               | 0,4       |                             | 0,1             |                 |            |      |
| MOD AASHTO SANS 3001 GR30                                                                                                                     | OMC                                             | %         | 12,3                        |                 | 12,3            |            |      |
|                                                                                                                                               | MDD                                             | (kg/m³)   | 1755                        |                 | 1846            |            |      |
| APPARENT & BULK DENSITY / WATER ABSORPTION<br>SANS 3001 AG20/21                                                                               | AD<br>BD<br>WA                                  | (kg/m³)   |                             |                 |                 |            |      |
|                                                                                                                                               |                                                 | (kg/m³)   |                             |                 |                 |            |      |
|                                                                                                                                               |                                                 | %         |                             |                 |                 |            |      |
|                                                                                                                                               | COMP MC                                         | %         | 12,2                        |                 | 12,2            |            |      |
| C.B.R.<br>SANS 3001 GR40                                                                                                                      | SWELL                                           | %         | 0,0                         | $\leq 1,5$      | 4,81            |            |      |
|                                                                                                                                               | 100%                                            |           | 17                          | -               | 1               |            |      |
|                                                                                                                                               | 98%                                             |           | 15                          | -               | 1               |            |      |
|                                                                                                                                               | 97%                                             |           | 14                          | -               | 1               |            |      |
|                                                                                                                                               | 95%                                             |           | 12                          | -               | 1               |            |      |
|                                                                                                                                               | 93%                                             |           | 10                          | $\geq 10$       | 1               |            |      |
|                                                                                                                                               | 90%                                             |           | 8                           | -               | 1               |            |      |
| pH                                                                                                                                            | TMH1 A20                                        | %         |                             |                 |                 |            |      |
| Conductivity                                                                                                                                  | TMH1 A21T                                       | (S/m)     |                             |                 |                 |            |      |
| Water Soluble Sulfates                                                                                                                        | *SANS 5850-1                                    | %         |                             |                 |                 |            |      |
| Acid Soluble Sulfates                                                                                                                         | *SANS 5850-2                                    | %         |                             |                 |                 |            |      |
| Durability Mill Index (max)                                                                                                                   | SANS AG16                                       | -         |                             |                 |                 |            |      |
| % passing 0,425mm sieve after Test                                                                                                            |                                                 | %         |                             |                 |                 |            |      |

NOTE : All tests marked with (\*) means that those test methods are not accredited.



**STEYN-WILSON  
LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Client: **JG Afrika (Pty) Ltd**

Project: **Paardevlei Site**

Attention: **Mr T Hlongwane**

Your Ref. No: **-**

Date Reported **22/01/2024**

## TEST REPORT REFERENCE NUMBER / JOB NUMBER :

**SWL32614**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

### Test Requested

### Site Sampling and Materials Information

3    x    MDD / CBR /IND

*Sampling Method*

*Sampled by CLIENT*

*Environmental Condition*

*Sunny*

*Deviation from the prescribed test method*

*No deviation from standard test method.*

*Responsibility of information disclaimer*

*The sample information was received from the customer. Results apply to the sample as received from the Customer.*

### FINAL REPORT

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

Yours Faithfully

STEYN-WILSON LABORATORIES (PTY) LTD



**Mr. R.Wilson**

**Technical Signatory**

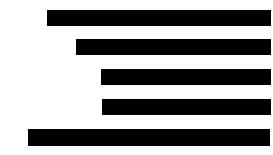
### Remarks:

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to SANS 3001.
4. The results reported relate only to the sample tested, Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.

**DIRECTORS:** **Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)**

Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

## CIVIL ENGINEERING TESTING LABORATORIES


| JOB NO:                                                                                                                                       | SWL32614            |           | Your Ref                     | -               | Date                   | 22/01/2024 |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------------------------------|-----------------|------------------------|------------|-----------------|
| CLIENT:                                                                                                                                       | JG Afrika (Pty) Ltd |           |                              | PROJECT:        | Paardevlei Site        |            |                 |
|                                                                                                                                               |                     |           |                              | BALANCE:        | AC1/0004               |            |                 |
|                                                                                                                                               |                     |           |                              | OVEN:           | AB1/0002               |            |                 |
| ATTENTION:                                                                                                                                    | Mr T Hlongwane      |           |                              | AUTO COMPACTOR: | AD1/0005               |            |                 |
|                                                                                                                                               |                     |           |                              | CBR PRESS:      | AA1/0001               |            |                 |
| CBR REPORT - TMH5 MD1, MD2 / SANS 3001 GR1, PR5, GR10, GR12, GR20, GR30, GR40, AG10, AG4, AG14, TMH1 A20, TMH1 A21T, *COTO, SANS 3001 AG20/21 |                     |           |                              |                 |                        |            |                 |
| The unambiguous description of the sample/s as received are as follows :                                                                      |                     |           |                              |                 |                        |            |                 |
| SAMPLE No.                                                                                                                                    | 32614/1             | SPEC      | 32614/5                      | SPEC            | 32614/6                | SPEC       |                 |
| HOLE No. / SV. / CHAINAGE                                                                                                                     | TP1                 | COTO - G6 | TP13                         | COTO - G8       | TP15                   | COTO - G9  |                 |
| ROAD No. OR NAME                                                                                                                              | Paardevlei Site     |           | Paardevlei Site              |                 | Paardevlei Site        |            |                 |
| LAYER TESTED / SAMPLED FROM                                                                                                                   | 0,60-0,90m          |           | 1,10-2,40m                   |                 | 0,00-2,60m             |            |                 |
| DATE RECEIVED                                                                                                                                 | 17/02/2024          |           | 17/02/2024                   |                 | 17/02/2024             |            |                 |
| CLIENTS MARKING                                                                                                                               | -                   |           | -                            |                 | -                      |            |                 |
| DESCRIPTION OF SAMPLE (COLOUR & TYPE)                                                                                                         | Weathered Shale     |           | Weathered Calcrete - Hardpan |                 | Silty Sand - Colluvium |            |                 |
| REDUCTION FACTOR / RF CHECK                                                                                                                   |                     | 0,0476    | 1,0000                       |                 | 1,0000                 |            |                 |
|                                                                                                                                               |                     | 0,07      | < 1%                         | 0,09            | < 1%                   | 0,08       | < 1%            |
| SIEVE ANALYSIS (mm)<br>SANS 3001 GR1                                                                                                          | 100,0               | 100       | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 75,0                | 100       | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 63,0                | 98        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 53,0                | 97        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 37,5                | 95        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 28,0                | 93        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 20,0                | 91        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 14,0                | 87        | -                            | 100             | -                      | 100        | -               |
|                                                                                                                                               | 5,00                | 60        | -                            | 97              | -                      | 99         | -               |
|                                                                                                                                               | 2,00                | 40        | -                            | 95              | -                      | 94         | -               |
|                                                                                                                                               | 0,425               | 15        | -                            | 83              | -                      | 78         | -               |
|                                                                                                                                               | 0,075               | 3         | -                            | 7               | -                      | 13         | -               |
| ACV                                                                                                                                           | SANS AG10           | %         |                              |                 |                        |            |                 |
| 10 % FACT                                                                                                                                     |                     | kN        |                              |                 |                        |            |                 |
| 10 % FACT Wet / Dry ratio                                                                                                                     |                     | %         |                              |                 |                        |            |                 |
| FLAKINESS INDEX                                                                                                                               | SANS AG4            | %         |                              | None specified  |                        |            |                 |
| FRACTURED FACES                                                                                                                               |                     | *COTO     | %                            | None specified  |                        |            |                 |
| ATTERBERG LIMITS<br>SANS 3001 GR10, GR12                                                                                                      | LL% - 0,425mm       | N.P       | -                            | N.P             | -                      | N.P        | -               |
|                                                                                                                                               | P.I. - 0,425mm      | N.P       | ≤ 2GM + 10                   | N.P             | ≤ (3xGM) + 10          | N.P        | ≤ (3xGM) + 10   |
|                                                                                                                                               | LS% - 0,425mm       | 0,0       | ≤ 7                          | 0,0             | -                      | 0,0        | -               |
|                                                                                                                                               | P.I. - 0,075mm      |           |                              |                 |                        |            |                 |
|                                                                                                                                               | GM                  | 2,41      | 1,2 ≥ GM ≤ 2,6               | 1,14            | 0,75 ≥ GM ≤ 2,7        | 1,15       | 0,75 ≥ GM ≤ 2,7 |
| SOIL-MORTAR PERCENTAGES<br>SANS 3001 PR5                                                                                                      | Coarse sand         | 63        |                              | 13              |                        | 17         |                 |
|                                                                                                                                               | Fine sand           | 28        |                              | 80              |                        | 69         |                 |
|                                                                                                                                               | Coarse fine sand    | 10        |                              | 18              |                        | 7          |                 |
|                                                                                                                                               | Medium fine sand    | 8         |                              | 38              |                        | 26         |                 |
|                                                                                                                                               | Fine fine sand      | 10        |                              | 23              |                        | 36         |                 |
|                                                                                                                                               | Silt and clay       | 8         |                              | 8               |                        | 14         |                 |
|                                                                                                                                               | Coarse sand ratio   | 0,6       |                              | 0,1             |                        | 0,2        |                 |
| MOD AASHTO<br>SANS 3001 GR30                                                                                                                  | OMC                 | %         | 8,2                          |                 | 12,4                   |            | 10,4            |
|                                                                                                                                               | MDD                 | (kg/m³)   | 2173                         |                 | 1672                   |            | 1854            |
| APPARENT & BULK DENSITY / WATER ABSORPTION<br>SANS 3001 AG20/21                                                                               | AD                  | (kg/m³)   |                              |                 |                        |            |                 |
|                                                                                                                                               | BD                  | (kg/m³)   |                              |                 |                        |            |                 |
|                                                                                                                                               | WA                  | %         |                              |                 |                        |            |                 |
|                                                                                                                                               | COMP MC             | %         | 8,1                          |                 | 12,2                   |            | 10,5            |
| C.B.R.<br>SANS 3001 GR40                                                                                                                      | SWELL               | %         | 0,0                          | ≤ 0,5           | 0,0                    | ≤ 1,5      | 0,0             |
|                                                                                                                                               | 100%                |           | 50                           | -               | 29                     | -          | 15              |
|                                                                                                                                               | 98%                 |           | 37                           | -               | 23                     | -          | 11              |
|                                                                                                                                               | 97%                 |           | 31                           | -               | 20                     | -          | 10              |
|                                                                                                                                               | 95%                 |           | 23                           | ≥ 25            | 16                     | -          | 9               |
|                                                                                                                                               | 93%                 |           | 16                           | -               | 12                     | ≥ 10       | 7               |
|                                                                                                                                               | 90%                 |           | 10                           | -               | 8                      | -          | 5               |
| pH                                                                                                                                            | TMH1 A20            | %         |                              |                 |                        |            |                 |
| Conductivity                                                                                                                                  | TMH1 A21T           | (S/m)     |                              |                 |                        |            |                 |
| Water Soluble Sulfates                                                                                                                        | *SANS 5850-1        | %         |                              |                 |                        |            |                 |
| Acid Soluble Sulfates                                                                                                                         | *SANS 5850-2        | %         |                              |                 |                        |            |                 |
| Durability Mill Index (max)                                                                                                                   | SANS AG16           | -         |                              |                 |                        |            |                 |
| % passing 0,425mm sieve after Test                                                                                                            |                     | %         |                              |                 |                        |            |                 |

NOTE : All tests marked with (\*) means that those test methods are not accredited.



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

Client: **JG Afrika (Pty) Ltd**  
 Project: Paardevlei  
 Attention: Mr Thabo Hlongwane  
 Your Ref. No:  
 Date Reported Wednesday, 10 January 2024

**TEST REPORT REFERENCE NUMBER / JOB NUMBER :**

**SWG00729**

Dear Sir / Madam

Herewith please find the original reports pertaining to the above mentioned project.

**Test Requested**

**Site Sampling and Materials Information**

|   |                                                |                                           |                                                                                                                   |
|---|------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 5 | x THERMAL CONDUCTIVITY and RESISTIVITY of SOIL | Sampling Method                           | Sample was Delivered                                                                                              |
|   |                                                | Enviromental Condition                    | Sunny                                                                                                             |
|   |                                                | Deviation from the prescribed test method | No deviation from standard test method.                                                                           |
|   |                                                | Responsibility of information disclaimer  | The sample information was received from the customer. Results apply to the sample as received from the Customer. |



**FINAL REPORT**

We would like to take this opportunity to thank you for your valued support.

Should you have any further enquiries please don't hesitate to contact me.

**Yours Faithfully**

STEYN-WILSON LABORATORIES (PTY) LTD



**F Coetze**

**Technical Signatory**

**Remarks:**

1. Information contained herein is confidential to STEYN-WILSON PTY LTD and the addressee
2. Opinions & Interpretations are not included in our schedule of Accreditation.
3. The samples were subjected and analysed according to ASTM.
4. The results reported relate only to the sample tested. Further use of the attached information is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.
5. This document is the correct record of all measurements made, and may not be reproduced other than with full written approval from a director of STEYN-WILSON LABORATORIES (PTY) LTD.
6. Measuring equipment is traceable to national standards (Where applicable).
7. Should there be any deviation from the prescribed test method comments will be made thereof, pertaining to the test on the relevant materials report.
8. Uncertainty of measurement is calculated and corresponds to a coverage probability of approximately 95%. Available on request.
9. The decision rule states that the measurement of uncertainty can be applied by the customer to the test results, on request. It is not the responsibility or liability of STEYN-WILSON LABORATORIES (PTY) LTD.

**DIRECTORS:** Mr. J. Steyn ND-Civil (Managing) | Mr. R. Wilson B-Tech Civil (Operations)



# STEYN-WILSON LABORATORIES

## CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

|           |                                                               |               |            |                 |
|-----------|---------------------------------------------------------------|---------------|------------|-----------------|
| JOB NO:   | SWG00729                                                      | REFERENCE NO: | DATE:      | 10 January 2024 |
| CLIENT    | JG Afrika (Pty) Ltd<br>[REDACTED]<br>[REDACTED]<br>[REDACTED] | PROJECT       | Paardevlei |                 |
| ATTENTION | Mr Thabo Hlongwane                                            |               |            |                 |

Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure - ASTM D5334 - 14 / Moisture Content SANS 3001 GR20

|                       |                      |                      |               |                     |        |
|-----------------------|----------------------|----------------------|---------------|---------------------|--------|
| Test Pit Number:      | TP9                  |                      |               |                     |        |
| Material Description: | Sandy silt Colluvium |                      | Layer Tested: | -                   |        |
|                       |                      |                      | Depth Tested: | 0,5m                |        |
| Sample No.            | Moisture Content %   | Thermal Conductivity |               | Thermal Resistivity |        |
|                       |                      | (K) W/cm.°C          | (K) W/m.K     | (g) °C.cm/W         |        |
|                       | 0,5%                 | 0,0011               | 0,1073        | 931,6770            | 9,3168 |
|                       | 2%                   | 0,0014               | 0,1410        | 709,2199            | 7,0922 |

|                       |                      |                      |               |                     |           |
|-----------------------|----------------------|----------------------|---------------|---------------------|-----------|
| Test Pit Number:      | TP16                 |                      |               |                     |           |
| Material Description: | Sandy Silt Colluvium |                      | Layer Tested: | -                   |           |
|                       | Depth Tested:        |                      | 0,5m          |                     |           |
| Sample No.            | Moisture Content %   | Thermal Conductivity |               | Thermal Resistivity |           |
|                       |                      | (K) W/cm.°C          | (K) W/m.K     | (g) °C.cm/W         | (g) K.m/W |
|                       | 0,5%                 | 0,0012               | 0,1153        | 867,0520            | 8,6705    |
|                       | 2%                   | 0,0015               | 0,1547        | 646,5517            | 6,4655    |

|                       |                            |                      |           |                     |           |
|-----------------------|----------------------------|----------------------|-----------|---------------------|-----------|
| Test Pit Number:      | TP18                       |                      |           |                     |           |
| Material Description: | Weathered Calcrete Hardpan |                      |           | Layer Tested:       | -         |
|                       | Depth Tested:              |                      | 0,5m      |                     |           |
| Sample No.            | Moisture Content %         | Thermal Conductivity |           | Thermal Resistivity |           |
|                       |                            | (K) W/cm.°C          | (K) W/m.K | (g) °C.cm/W         | (g) K.m/W |
|                       | 0,5%                       | 0,0016               | 0,1593    | 627,6151            | 6,2762    |
|                       | 2%                         | 0,0018               | 0,1840    | 543,4783            | 5,4348    |

*NOTE: All tests marked with (\*) means that those test methods are not accredited.*



**STEYN-WILSON**  
**LABORATORIES**

CIVIL ENGINEERING TESTING LABORATORIES



Web: [www.steynwilson.co.za](http://www.steynwilson.co.za)

|                                     |                     |                      |  |                |                 |
|-------------------------------------|---------------------|----------------------|--|----------------|-----------------|
| <b>JOB NO:</b>                      | SWG00729            | <b>REFERENCE NO:</b> |  | <b>DATE:</b>   | 10 January 2024 |
| <b>CLIENT</b>                       | JG Afrika (Pty) Ltd |                      |  | <b>PROJECT</b> | Paardevlei      |
| <b>ATTENTION</b> Mr Thabo Hlongwane |                     |                      |  |                |                 |

Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure - ASTM D5334 – 14 / Moisture Content SANS 3001 GR20

|                              |                           |                           |                             |                            |           |
|------------------------------|---------------------------|---------------------------|-----------------------------|----------------------------|-----------|
| <b>Test Pit Number:</b>      | TP20                      |                           |                             |                            |           |
| <b>Material Description:</b> | Sandy Clay Residual Shale |                           | <b>Layer Tested:</b>        | -                          |           |
|                              |                           |                           | <b>Depth Tested:</b>        | 0,5m                       |           |
| <b>Sample No.</b>            |                           | <b>Moisture Content %</b> | <b>Thermal Conductivity</b> | <b>Thermal Resistivity</b> |           |
|                              |                           | (K) W/cm.°C               | (K) W/m.K                   | (g) °C.cm/W                | (g) K.m/W |
|                              |                           | 0,5%                      | 0,0015                      | 0,1547                     | 646,5517  |
|                              |                           | 2%                        | 0,0017                      | 0,1690                     | 591,7160  |
|                              |                           |                           |                             |                            | 5,9172    |

|                              |                      |                           |                             |                            |           |
|------------------------------|----------------------|---------------------------|-----------------------------|----------------------------|-----------|
| <b>Test Pit Number:</b>      | TP27                 |                           |                             |                            |           |
| <b>Material Description:</b> | Sandy Silt Colluvium |                           | <b>Layer Tested:</b>        | -                          |           |
|                              |                      |                           | <b>Depth Tested:</b>        | 0,5m                       |           |
| <b>Sample No.</b>            |                      | <b>Moisture Content %</b> | <b>Thermal Conductivity</b> | <b>Thermal Resistivity</b> |           |
|                              |                      | (K) W/cm.°C               | (K) W/m.K                   | (g) °C.cm/W                | (g) K.m/W |
|                              |                      | 0,5%                      | 0,0012                      | 0,1243                     | 804,2895  |
|                              |                      | 2%                        | 0,0016                      | 0,1627                     | 614,7541  |
|                              |                      |                           |                             |                            | 6,1475    |

NOTE: All tests marked with (\*) means that those test methods are not accredited.

# Direct Shear Test

---

## Initial Sample Details

|                       |                      | Specimen 1 | Specimen 2 | Specimen 3 |
|-----------------------|----------------------|------------|------------|------------|
| Height                | (mm)                 | 18,8       | 18,8       | 18,8       |
| Diameter              | (mm)                 | 59,9       | 59,9       | 59,9       |
| Mass                  | (g)                  | 90,3       | 90,4       | 90,4       |
| Moisture              | (%)                  | 12,4       | 12,4       | 12,4       |
| Dry Density           | (Mg/m <sup>3</sup> ) | 1,51       | 1,51       | 1,51       |
| Bulk Density          | (Mg/m <sup>3</sup> ) | 1,70       | 1,70       | 1,70       |
| Void Ratio            |                      | 0,733      | 0,731      | 0,731      |
| Particle Density      | (Mg/m <sup>3</sup> ) |            | 2,62       |            |
| Sample Method         |                      |            | Bag        |            |
| Disturbed/Undisturbed |                      |            | Disturbed  |            |
| Remoulded Desity      | (Mg/m <sup>3</sup> ) |            | 1.677(90%) |            |

## Consolidation Details

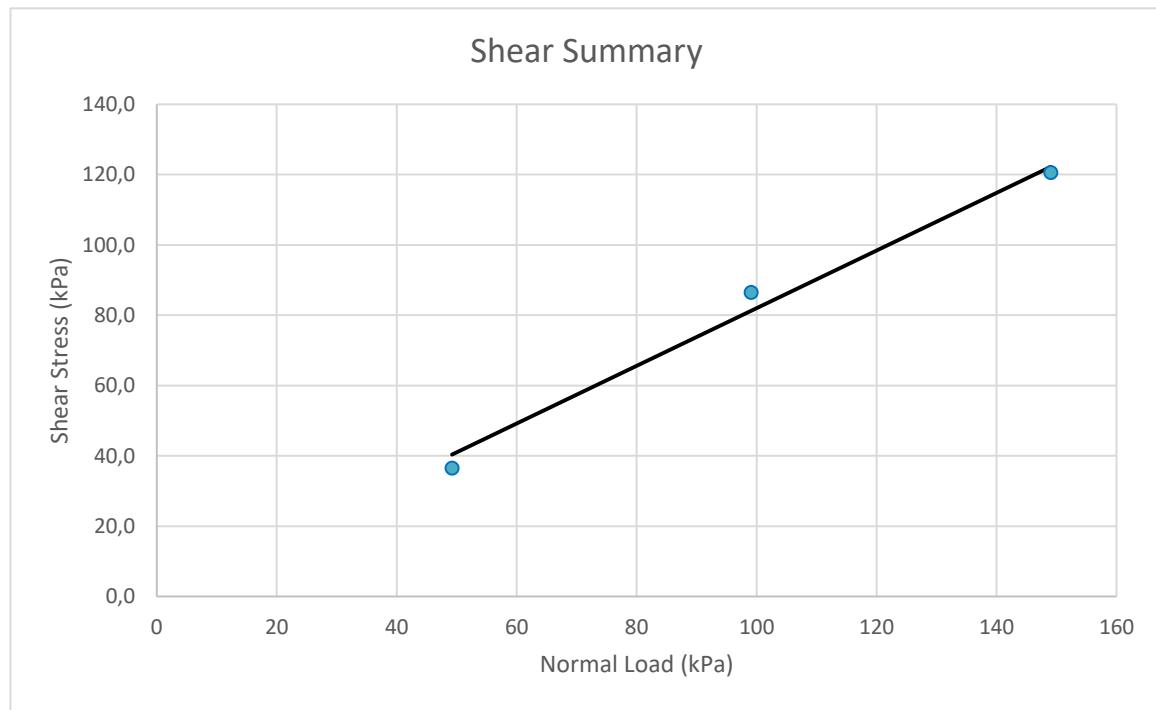
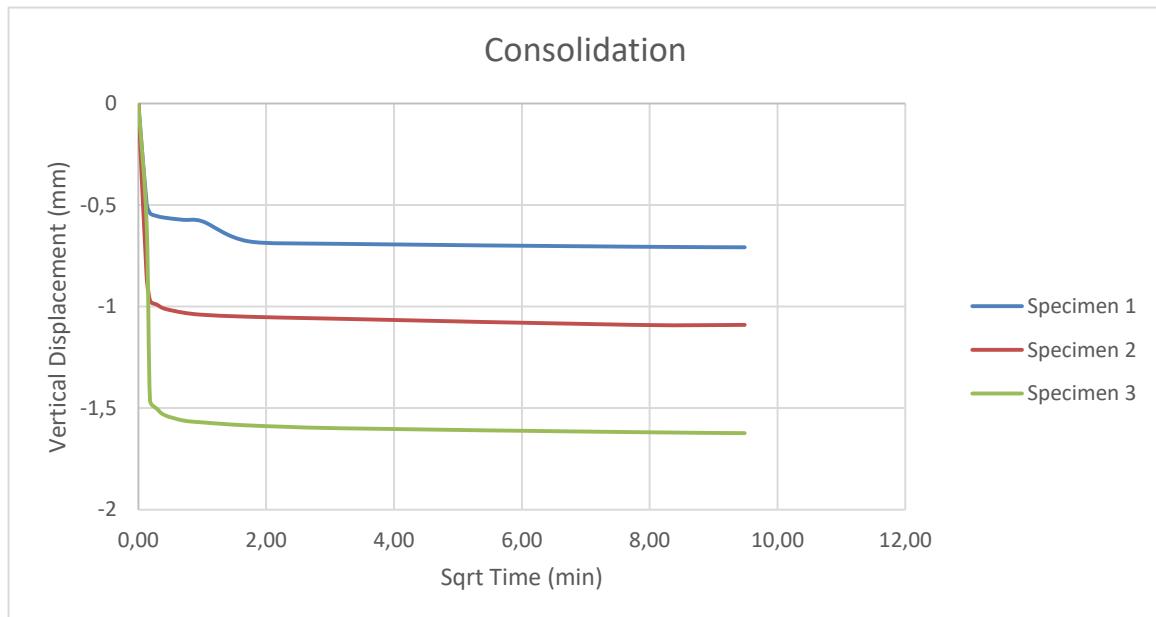
|                                |      | Specimen 1 | Specimen 2 | Specimen 3 |
|--------------------------------|------|------------|------------|------------|
| Vertical Displacement          | (mm) | 0,708      | 1,090      | 1,623      |
| Void Ratio After Consolidation |      | 0,668      | 0,631      | 0,582      |

## Maximum Shear Stress Results

|                              |                | Specimen 1 | Specimen 2 | Specimen 3 |
|------------------------------|----------------|------------|------------|------------|
| Normal Stress                | (kPa)          | 49         | 99         | 149        |
| Peak Shear Stress            | (kPa)          | 36,5       | 86,5       | 120,5      |
| Horizontal Strain at Failure | (mm)           | 6,3        | 6,9        | 5,3        |
| Verical Strain at Failure    | (mm)           | 0,155      | 0,291      | 0,380      |
| Rate of Shear                | (mm/min)       | 0,020      | 0,020      | 0,020      |
| Friction Angle ( $\phi$ )    | ( $^{\circ}$ ) |            | 39,4       |            |
| Cohesion (c)                 | (kPa)          |            | 0,00       |            |

## Final Sample Details

|            |     | Specimen 1 | Specimen 2 | Specimen 3 |
|------------|-----|------------|------------|------------|
| Mass       | (g) | 91,0       | 91,3       | 91,2       |
| Moisture   | (%) | 20,1       | 19,7       | 19,1       |
| Void Ratio |     | 0,653      | 0,604      | 0,547      |

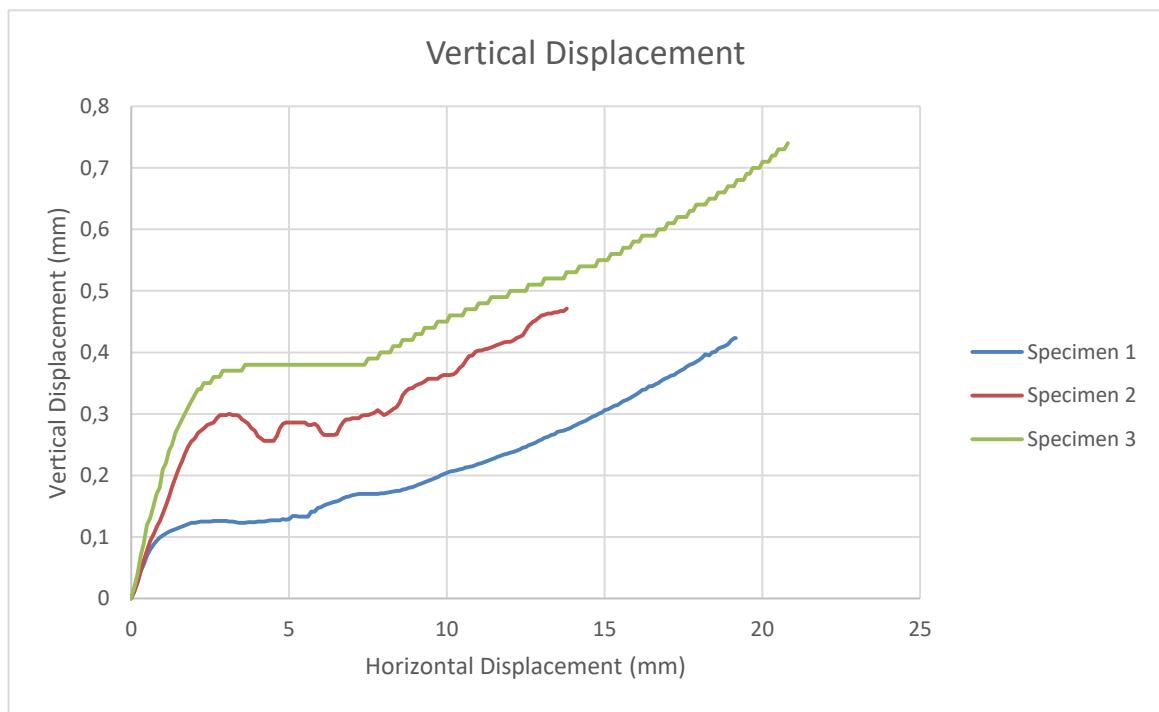
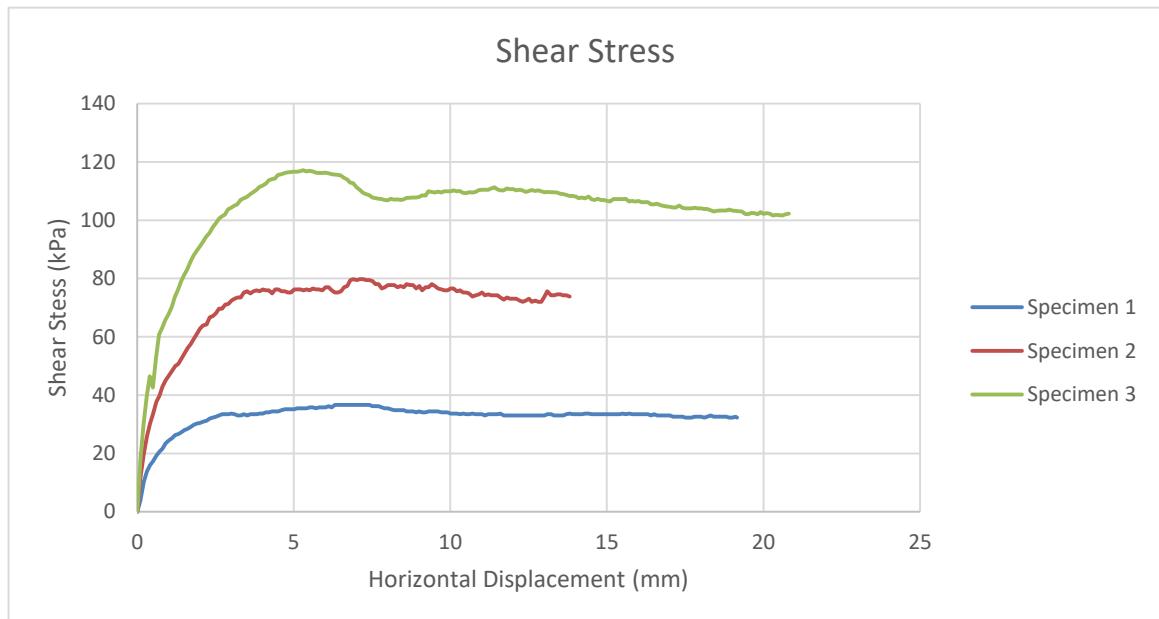




|         |                 |             |                  |
|---------|-----------------|-------------|------------------|
| Project | Paardevlei      |             |                  |
| Sample  | TP13_1.1-2.4_SB |             |                  |
| Client  | JG Africa       | Test Method | BS1377 - 7: 1990 |
| Jobfile | SWG00729        | Test Date   | 24/01/2024       |

# Direct Shear Test

## Graphs

|                           |                |      |
|---------------------------|----------------|------|
| Friction Angle ( $\phi$ ) | ( $^{\circ}$ ) | 39,4 |
| Cohesion (c)              | (kPa)          | 0,00 |

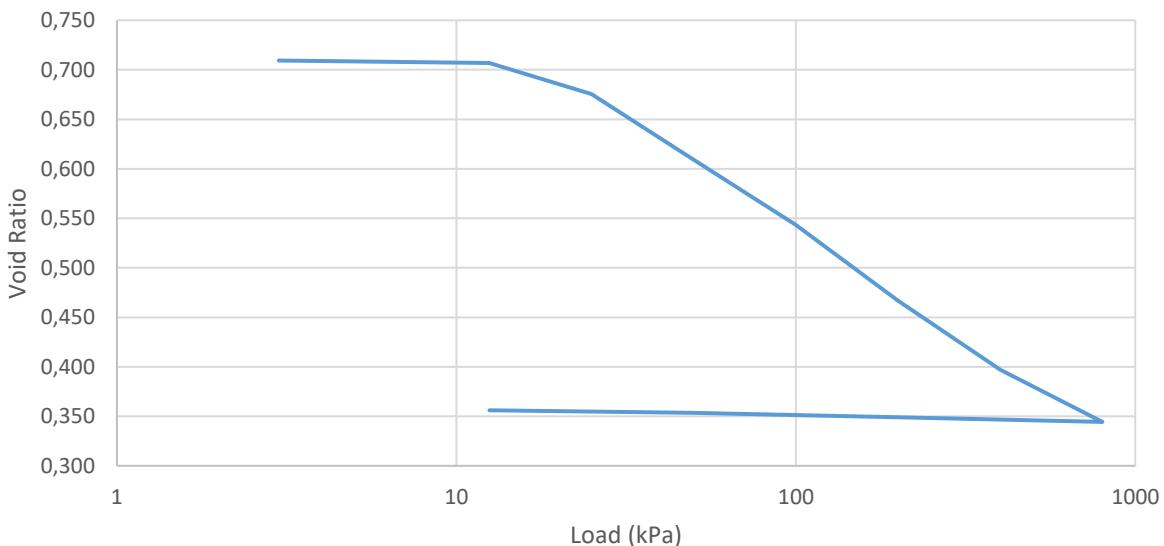

|         |                 |             |                  |
|---------|-----------------|-------------|------------------|
| Project | Paardevlei      |             |                  |
| Sample  | TP13_1.1-2.4_SB |             |                  |
| Client  | JG Africa       | Test Method | BS1377 - 7: 1990 |
| Jobfile | SWG00729        | Test Date   | 24/01/2024       |

# Direct Shear Test

## Graphs

|                           |                |      |
|---------------------------|----------------|------|
| Friction Angle ( $\phi$ ) | ( $^{\circ}$ ) | 39,4 |
| Cohesion (c)              | (kPa)          | 0,00 |




|         |                 |             |                  |
|---------|-----------------|-------------|------------------|
| Project | Paardevlei      |             |                  |
| Sample  | TP13_1.1-2.4_SB |             |                  |
| Client  | JG Africa       | Test Method | BS1377 - 7: 1990 |
| Jobfile | SWG00729        | Test Date   | 24/01/2024       |

## Oedometer Test

| Sample Detail         |                      | Initial    | Final |
|-----------------------|----------------------|------------|-------|
| Height                | (mm)                 | 20,1       | 15,9  |
| Diameter              | (mm)                 | 59,8       | 59,8  |
| Weight                | (g)                  | 95,4       | 98,1  |
| Moisture              | (%)                  | 12,4       | 19,6  |
| Dry Density           | (Mg/m <sup>3</sup> ) | 1,50       | 1,83  |
| Bulk Density          | (Mg/m <sup>3</sup> ) | 1,69       | 2,19  |
| Void Ratio            |                      | 0,709      | 0,356 |
| Particle Density      | (Mg/m <sup>3</sup> ) | 2,57       |       |
| Disturbed/Undisturbed |                      | Disturbed  |       |
| Remoulded Density     | (Mg/m <sup>3</sup> ) | 1.677(90%) |       |

| Load (kPa) | Height (mm) | Void Ratio |
|------------|-------------|------------|
| 3          | 20,100      | 0,709      |
| 12,5       | 20,071      | 0,707      |
| 25         | 19,700      | 0,675      |
| 50         | 18,922      | 0,609      |
| 100        | 18,147      | 0,543      |
| 200        | 17,246      | 0,467      |
| 400        | 16,428      | 0,397      |
| 800        | 15,808      | 0,344      |
| 200        | 15,862      | 0,349      |
| 50         | 15,916      | 0,354      |
| 12,5       | 15,945      | 0,356      |

Oedometer



|         |                    |             |                  |
|---------|--------------------|-------------|------------------|
| Project | Paardevlei         |             |                  |
| Sample  | TP7_0.30-1.70m_OED |             |                  |
| Client  | JG Africa          | Test Method | BS1377 - 5: 1990 |
| Jobfile | SWG00729           | Test Date   | 26/01/24         |

## FALLING HEAD PERMEABILITY TEST REPORT - TEST METHOD: ASTM D2434 & KH HEAD

| Sample Details |           | Remould Details (Proctor) |                   |      |              |      |                   |       | Tests    |          |      |     |   |                     |                    |            |            |
|----------------|-----------|---------------------------|-------------------|------|--------------|------|-------------------|-------|----------|----------|------|-----|---|---------------------|--------------------|------------|------------|
| TP13           |           | Specified                 |                   |      | Actual       |      |                   |       | Time     |          |      |     |   |                     |                    |            |            |
| Sample no.     | Depth(m): | Dry Density:              | %:                | OMC: | Dry density: | %    | Moisture Content: | Test: | H1 (mm): | H2 (mm): | h    | m   | s | Permeability (cm/s) | Permeability (m/s) |            |            |
| 2431           | 1.1-2.4m  | 1677                      | kg/m <sup>3</sup> | 90   | 12,4         | 1511 | kg/m <sup>3</sup> | 90,1  | 12,4     | 1        | 1645 | 685 | 0 | 23                  | 15                 | 3,8239E-04 | 3,8239E-06 |
|                |           |                           |                   |      |              |      |                   |       |          | 2        | 1645 | 865 | 0 | 34                  | 5                  | 1,9138E-04 | 1,9138E-06 |
|                |           |                           |                   |      |              |      |                   |       |          | 3        | 1645 | 865 | 1 | 4                   | 21                 | 1,0136E-04 | 1,0136E-06 |
|                |           |                           |                   |      |              |      |                   |       |          |          |      |     |   | Average:            | 2,2504E-04         | 2,2504E-06 |            |



|           |            |
|-----------|------------|
| Project   | Paardevlei |
| Client    | JG Afrika  |
| Jobfile   | SWG00729   |
| Test Date | 22/01/24   |

### Coefficient of Permeability m/s (KH HEAD)

|                             | k=1     | $10^{-1}$ | $10^{-2}$   | $10^{-3}$ | $10^{-4}$                  | $10^{-5}$ | $10^{-6}$ | $10^{-7}$ | $10^{-8}$               | $10^{-9}$    | $10^{-10}$ | $10^{-11}$ | $10^{-12}$ |  |  |
|-----------------------------|---------|-----------|-------------|-----------|----------------------------|-----------|-----------|-----------|-------------------------|--------------|------------|------------|------------|--|--|
| Drainage characteristics    | GOOD    |           |             |           |                            | POOR      |           |           | PRACTICALLY IMPERVIOUS  |              |            |            |            |  |  |
| Permeability classification | HIGH    |           | MEDIUM      |           | LOW                        |           | VERY LOW  |           | PRACTICALLY IMPERMEABLE |              |            |            |            |  |  |
| General soil type           | GRAVELS |           | CLEAN SANDS |           | FISSURED & WEATHERED CLAYS |           |           |           |                         | INTACT CLAYS |            |            |            |  |  |
|                             |         |           |             |           | VERY FINE OR SILTY SANDS   |           |           |           |                         |              |            |            |            |  |  |



**STEYN-WILSON**  
**GEOTECHNICAL**  
CIVIL ENGINEERING TESTING LABORATORIES



T0835

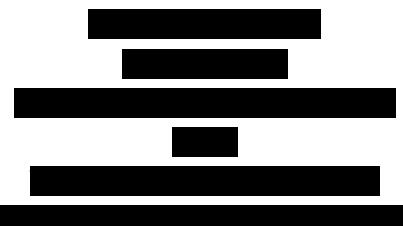
|           |            |
|-----------|------------|
| Project   | Paardevlei |
| Client    | JG Afrika  |
| Jobfile   | SWG00729   |
| Test Date | 22/01/24   |

## *Appendix F: Electrical Resistivity Report*



---

## PAARDEVLEI SPV AND BESS PROJECT AT SOMERSET WEST IN THE WESTERN CAPE RESISTIVITY SURVEY REPORT


January 2024  
Ref: 006097R01

For:



Prepared by:

**JG AFRIKA (PTY) LTD**



Project Lead: Robert Schapers

|                          |            |
|--------------------------|------------|
| <b>VERIFICATION PAGE</b> | Form 4.3.1 |
|                          | Rev 13     |

**TITLE:**

PAARDEVLEI SPV AND BESS PROJECT AT SOMERSET WEST IN THE WESTERN CAPE  
RESISTIVITY SURVEY REPORT

| JG AFRIKA REF. NO. | DATE:      | REPORT STATUS |
|--------------------|------------|---------------|
| 006097R01          | 09/01/2024 | First Issue   |

**CARRIED OUT BY:**

JG AFRIKA (PTY) LTD - DURBAN


**COMMISSIONED BY:**

INTEGRATION ENVIRONMENT & ENERGY


**AUTHOR**

Robert Schapers

**CLIENT CONTACT PERSON**

Muhammad Imran

**SYNOPSIS**

Resistivity survey for SPV and BESS facility at Paardevlei, Somerset West, Western Cape

**KEY WORDS:**

Geology, resistivity, conductivity, inversion models, corrosion potential, earthing.

© COPYRIGHT: JG Afrika (Pty) Ltd.

**QUALITY VERIFICATION**

This report has been prepared under the controls established by a quality management system that meets the requirements of ISO9001: 2015 which has been independently certified by DEKRA Certification



| Verification  | Capacity            | Name              | Signature                                                                            | Date                                                                                                                      |
|---------------|---------------------|-------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Checked by    | Geohydrologist      | Priantha Subrayen |  | 10 Jan 24                                                                                                                 |
| Authorised by | Executive Associate | Robert Schapers   |  | 10 Jan 24                                                                                                                 |
| Filename:     |                     |                   |                                                                                      | V:\Active Projects\006097 - Paardevlei Res Survey (RS)\05-Reports\006097R01 Paardevlei SPV Resistivity Survey Report.docx |

# PAARDEVLEI SPV AND BESS PROJECT AT SOMERSET WEST IN THE WESTERN CAPE, RESISTIVITY SURVEY REPORT

## TABLE OF CONTENTS

|     |                                         |   |
|-----|-----------------------------------------|---|
| 1   | INTRODUCTION .....                      | 3 |
| 2   | INFORMATION SUPPLIED .....              | 3 |
| 3   | REGIONAL GEOLOGY AND GEOHYDROLOGY ..... | 4 |
| 4   | RESISTIVITY SURVEY .....                | 4 |
| 4.1 | Resistivity Survey Methodology .....    | 4 |
| 4.2 | Resistivity Results .....               | 5 |
| 5   | CONCLUSIONS .....                       | 9 |

## TABLES

|                                                                                |   |
|--------------------------------------------------------------------------------|---|
| Table 1: Summary Results of Inversion Modelling .....                          | 6 |
| Table 2: Summary Layer Statistics .....                                        | 7 |
| Table 3: Literature Based Resistivity Values for Certain Geological Media..... | 8 |

## FIGURES

|                                                           |   |
|-----------------------------------------------------------|---|
| Figure 1: Locality Plan .....                             | 3 |
| Figure 2: Site Plan Showing Sounding Test Positions ..... | 5 |

## ANNEXURES

|                                          |  |
|------------------------------------------|--|
| Annexure A: Resistivity Sounding Results |  |
| Annexure B: Inversion Models             |  |

# PAARDEVLEI SPV AND BESS PROJECT AT SOMERSET WEST IN THE WESTERN CAPE, RESISTIVITY SURVEY REPORT

## 1 INTRODUCTION

This report presents the results of a resistivity survey carried out at the site of the proposed Paardenvlei Solar Photovoltaic (SPV) facility and Battery Energy Storage System (BESS) at Somerset West in the Western Cape. The purpose of the assessment was to determine the in situ electrical resistivity of the subsoils through inversion modelling.

The site is located between Macassar and Somerset West and is approximately 38.7 km east south east of the centre of Cape Town. The site is bound by the N2 between Cape Town and Somerset West on the northern side, and the False Bay along the southern side. The site can be accessed via De Beers Avenue, which in turn is accessed from Broadway Boulevard (R44) and the N2 from the Somerset West side. The approximate area of the SPV site is 152 ha and comprises three (3 No.) adjacent areas. The site is at approximately 9 to 25 MAMSL and gradually slopes south west towards the coast line. The location of the site is presented in Figure 1.

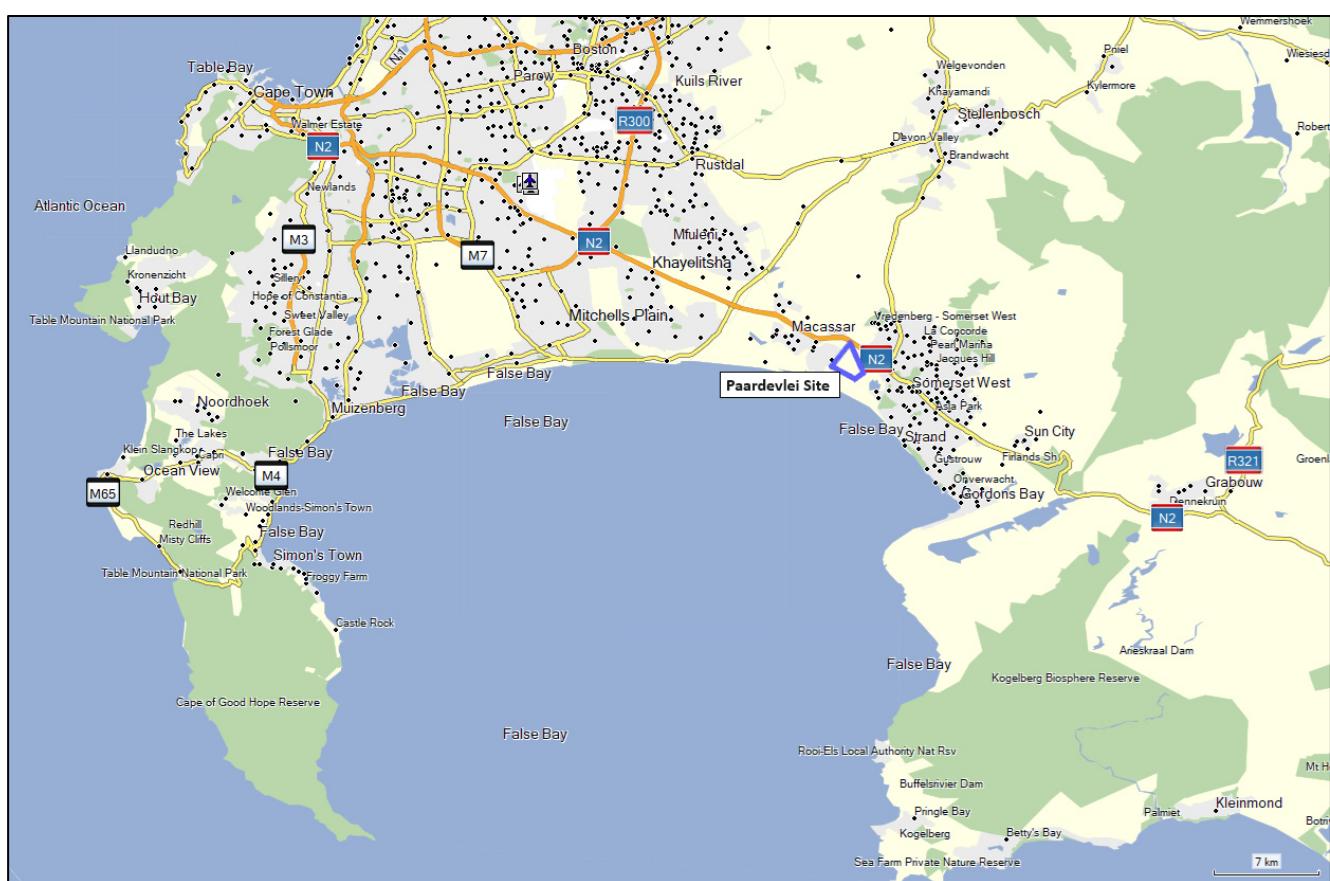



Figure 1: Locality Plan

## 2 INFORMATION SUPPLIED

The following information has been used in the preparation of this report:

- Specialist Terms of Reference for the Paardenvlei Solar PV Project prepared by Integration Environment & Energy, titled “Specialist Terms of Reference”, dated August 2023
- J.S.V van Zijl (1987). A Practical Manual on the Resistivity Method. Revised Edition. CSIR Report K79. Council for Scientific and Industrial Research, Pretoria

- Report STP1013 of American Society for Testing Materials (ASTM), titled “Effects of Soil Characteristics on Corrosion”, dated 1989, edited by Chalker and Palmer
- Drawing numbered PAARD-SIT-PLN-01 of Single Destination Engineering, titled “Site Plan Solar Field – Fixed Tilt”, at a scale of 1: 5000, dated 02 October 2023
- Drawing numbered PAARD-SIT-PLN-02 of Single Destination Engineering, titled “Site Plan Solar Field – Single Axis Tracker”, at a scale of 1: 5000, dated 02 October 2023
- Drawing numbered PAARD-SIT-PLN-03 of Single Destination Engineering, titled “Site Plan Solar Field – East West Sheds”, at a scale of 1: 5000, dated 02 October 2023
- Map Sheet titled, “3318 Cape Town”, at a scale of 1:250 000, dated 1988, of the Geological Map Series, supplied by the Department of Mineral and Energy Affairs
- Google Earth Pro version 7.3.6 of December 2022.

### 3 REGIONAL GEOLOGY AND GEOHYDROLOGY

The site is underlain by quaternary sediments comprising loam and sandy loam, unconsolidated sand, limestone and calcrete, and sandy soil, which extend to approximately 12 m depth beneath the site. The quaternary sediments are underlain by quartzitic sandstone of the Tygerberg Formation of the Malmesbury Group. The primary aquifer conditions within the quaternary sediments indicate groundwater levels between 1 and 8 m depth. The groundwater quality typically indicates saline conditions with elevated electrical conductivity and total dissolved solids.

### 4 RESISTIVITY SURVEY

#### 4.1 Resistivity Survey Methodology

The resistivity survey was carried from 13 to 15 December 2023. Fifteen (15 No.) sounding locations designated by the geotechnical trial pit numbering were carried out at the site. The approximate positions of field test locations are presented in Figure 2.

Soil resistivity testing was carried out in accordance with the Wenner array configuration, according to the practise recommended by the South African Council for Scientific and Industrial Research (CSIR) National Physical Laboratory. Electrical resistivity soundings were performed to establish the inferred soil resistivity to an inferred depth of 20 m.

The Wenner electrical resistivity array consisted of two current electrodes (A and B) and two potential electrodes (M and N) set out about the sounding position (O). The current electrodes were used to pass current and the potential electrodes used to measure the potential difference during a measurement cycle. The four electrodes were driven into the ground at specified distances from the central sounding point (O) and set out in a straight line. For a given measurement, the spacing between any two adjacent electrodes (A and M, M and N, and N and B) was kept equal and designated (a).

Apparent resistivity measurements were taken while increasing the electrode spacing (a), allowing for deeper sounding penetration. Apparent resistivity measurements were taken at electrode spacings of 1, 2, 3, 5, 7, 10, 15, and 20 metres, corresponding to the same depths of inferred penetration below ground level.



Figure 2: Site Plan Showing Sounding Test Positions

#### 4.2 Resistivity Results

The results of the resistivity soundings were modelled using a computer inversion model (IPI2WIN) that interprets the apparent resistivity variations of the ground by fitting internally generated model data to the field data through an inversion process. The field measurements for resistivity testing are presented in Annexure A.

The results of inversion modelling of Wenner soundings were reviewed and inferred layers and electrical resistivity presented. The inferred corrosivity potential was assigned to each layer. The American Water Treatment Association (ASTM) suggests a stringent limit for soils with a resistivity up to  $10 \Omega \cdot m$  as being potentially aggressive and severely corrosive. The following ASTM<sup>1</sup> **steel pipe corrosion classification** has been used:

<sup>1</sup> Report STP1013 of American Society for Testing Materials (ASTM), titled "Effects of Soil Characteristics on Corrosion", dated 1989, edited by Chalker and Palmer

| Resistivity ( $\Omega\text{.m}$ ) | Classification          |
|-----------------------------------|-------------------------|
| 0 - 10                            | very severely corrosive |
| 10 - 20                           | severely corrosive      |
| 20 -50                            | moderately corrosive    |
| 50 -100                           | mildly corrosive        |
| >100                              | very mildly corrosive   |

Inversion models presented in this report act as an illustrative mechanism and aid in interpretation of the subsoil conditions at each test location. The typical number of layers input into the models was three (3 No.), with a maximum of four (4 No.). It is possible that the interpretation of depths and resistivity values of deeper layers through inversion modelling may become inaccurate, as underlying or deeper sounding readings are absent. Modelling of the data will infer these layers to continue to an infinite depth. It is also possible that variance of observed resistivity between sounding locations may occur.

The inversion models are presented in Annexure B. The summary of inversion modelling is summarised in Table 1.

*Table 1: Summary Results of Inversion Modelling*

| Sounding | Latitude | Longitude | Layer | Depth of Layer Base (mbgl) | Inferred Layer Resistivity ( $\Omega\text{.m}$ ) | Inferred Corrosivity    |
|----------|----------|-----------|-------|----------------------------|--------------------------------------------------|-------------------------|
| TP01     | 34.06601 | 18.80041  | 1     | 0.50                       | 181                                              | very mildly corrosive   |
|          |          |           | 2     | 0.55                       | 0.26                                             | very severely corrosive |
|          |          |           | 3     | >                          | 1528                                             | very mildly corrosive   |
| TP03     | 34.06737 | 18.79651  | 1     | 0.50                       | 409                                              | very mildly corrosive   |
|          |          |           | 2     | 11.10                      | 27.8                                             | moderately corrosive    |
|          |          |           | 3     | >                          | 29210                                            | very mildly corrosive   |
| TP05     | 34.07025 | 18.79880  | 1     | 0.50                       | 7.09                                             | very severely corrosive |
|          |          |           | 2     | 0.84                       | 9266                                             | very mildly corrosive   |
|          |          |           | 3     | >                          | 2.04                                             | very severely corrosive |
| TP06     | 34.06993 | 18.79376  | 1     | 0.57                       | 307.9                                            | very mildly corrosive   |
|          |          |           | 2     | 5.19                       | 29.04                                            | moderately corrosive    |
|          |          |           | 3     | >                          | 219.2                                            | very mildly corrosive   |
| TP10     | 34.07419 | 18.79001  | 1     | 1.15                       | 29.9                                             | moderately corrosive    |
|          |          |           | 2     | 2.22                       | 5.11                                             | very severely corrosive |
|          |          |           | 3     | 4.17                       | 78                                               | mildly corrosive        |
|          |          |           | 4     | >                          | 4.68                                             | very severely corrosive |
| TP12     | 34.07664 | 18.79155  | 1     | 1.84                       | 30.7                                             | moderately corrosive    |
|          |          |           | 2     | 9.39                       | 8.71                                             | very severely corrosive |
|          |          |           | 3     | >                          | 6134                                             | very mildly corrosive   |
| TP15     | 34.07967 | 18.78704  | 1     | 2.34                       | 829                                              | very mildly corrosive   |
|          |          |           | 2     | 7.51                       | 15.5                                             | severely corrosive      |
|          |          |           | 3     | >                          | 8047                                             | very mildly corrosive   |
| TP17     | 34.08059 | 18.79256  | 1     | 1.45                       | 190                                              | very mildly corrosive   |
|          |          |           | 2     | 3.01                       | 5.99                                             | very severely corrosive |
|          |          |           | 3     | >                          | 23059                                            | very mildly corrosive   |

| Sounding | Latitude | Longitude | Layer | Depth of Layer Base (mbgl) | Inferred Layer Resistivity (Ω.m) | Inferred Corrosivity    |
|----------|----------|-----------|-------|----------------------------|----------------------------------|-------------------------|
| TP19     | 34.07857 | 18.79566  | 1     | 0.50                       | 179                              | very mildly corrosive   |
|          |          |           | 2     | 2.36                       | 11.6                             | severely corrosive      |
|          |          |           | 3     | 3.54                       | 0.98                             | very severely corrosive |
|          |          |           | 4     | >                          | 1762                             | very mildly corrosive   |
| TP20     | 34.07569 | 18.79736  | 1     | 0.70                       | 2.844                            | very severely corrosive |
|          |          |           | 2     | 1.71                       | 0.762                            | very severely corrosive |
|          |          |           | 3     | >                          | 40.69                            | moderately corrosive    |
| TP21     | 34.07302 | 18.79807  | 1     | 0.73                       | 31.63                            | moderately corrosive    |
|          |          |           | 2     | 3.90                       | 7.635                            | very severely corrosive |
|          |          |           | 3     | >                          | 53.09                            | mildly corrosive        |
| TP23     | 34.07255 | 18.80274  | 1     | 1.83                       | 10.5                             | severely corrosive      |
|          |          |           | 2     | 16.60                      | 21.2                             | moderately corrosive    |
|          |          |           | 3     | >                          | 913                              | very mildly corrosive   |
| TP24     | 34.07669 | 18.80130  | 1     | 2.76                       | 1.64                             | very severely corrosive |
|          |          |           | 2     | 11.80                      | 7.07                             | very severely corrosive |
|          |          |           | 3     | >                          | 1292                             | very mildly corrosive   |
| TP26     | 34.07962 | 18.80266  | 1     | 2.90                       | 1.4                              | very severely corrosive |
|          |          |           | 2     | 10.70                      | 201                              | very mildly corrosive   |
|          |          |           | 3     | >                          | 807                              | very mildly corrosive   |
| TP27     | 34.08059 | 18.79988  | 1     | 0.50                       | 26.5                             | moderately corrosive    |
|          |          |           | 2     | 7.62                       | 5.42                             | very severely corrosive |
|          |          |           | 3     | 29.40                      | 602                              | very mildly corrosive   |
|          |          |           | 4     | >                          | 5149                             | very mildly corrosive   |

> indicates inferred depth of final layer modelled as infinite

The results of inversion modelling are variable across the site. Typically, the results do indicate that the surface layer of variable thickness is of low resistivity (average 149 Ω.m), which is underlain by a second layer of variable thickness of high resistivity (average 640 Ω.m). Both these layers are then underlain by a very highly resistive layer (average 4800 Ω.m) modelled to infinite depth. A statistical review of the data is difficult given the influence of variable geology, topography, depth to groundwater, and inferred saline groundwater conditions across the site.

It is preferred that the soil resistivity results are considered in isolation, and low resistivity results with corresponding high conductivity should have suitable earthing mechanisms and corrosion protection placed in the designs. The summary of the minimum, maximum and average values of the modelled layers is presented in Table 2.

*Table 2: Summary Layer Statistics*

| Layer | Description       | Minimum | Maximum | Average |
|-------|-------------------|---------|---------|---------|
| 1     | Depth (m)         | 0.50    | 2.90    | 1.25    |
|       | Resistivity (Ω.m) | 1.40    | 829     | 149     |
| 2     | Depth (m)         | 0.55    | 16.6    | 6.30    |
|       | Resistivity (Ω.m) | 0.26    | 9266    | 640     |
| 3     | Resistivity (Ω.m) | 0.98    | 29210   | 4799    |

Resistivity, although a major factor, is not the only consideration when determining the corrosivity of a soil on a metal or concrete object. Other considerations include pH, redox potential, sulphide content, moisture content, and chloride content. The resistivity values should be regarded as a first indication of corrosive potential. It is further noted that the expected elevated EC in the groundwater will influence the model outputs.

Conductivity is the inverse of the resistivity and soils with a high resistivity value will have a corresponding low conductivity value. Resistivity therefore indicates the ability of the media to carry corrosive currents. There generally exists a linear relationship between corrosivity of steel and the conductance of the medium around it. It is therefore expected that a medium with a high resistivity value will have a corresponding low corrosive nature. Aggressiveness of the subsoil profiles on concrete structures is partially related to the conductivity of the subsoils, and primarily to the chemical constituents present. Typical literature based resistivity values for certain geological media are presented in Table 3.

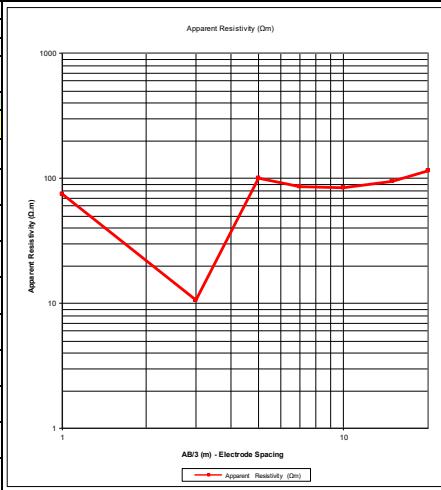
*Table 3: Literature Based Resistivity Values for Certain Geological Media*

| <b>Material</b>                      | <b>Resistivity (<math>\Omega \cdot \text{m}</math>)</b> |
|--------------------------------------|---------------------------------------------------------|
| <b>Igneous and Metamorphic Rocks</b> |                                                         |
| Granite                              | $5 \times 10^3 - 10^6$                                  |
| Basalt                               | $10^3 - 10^6$                                           |
| Slate                                | $6 \times 10^2 - 4 \times 10^7$                         |
| Marble                               | $10^2 - 2.5 \times 10^8$                                |
| Quartzite                            | $10^2 - 2 \times 10^8$                                  |
| <b>Sedimentary Rocks</b>             |                                                         |
| Sandstone                            | $8 - 4 \times 10^3$                                     |
| Shale                                | $20 - 2 \times 10^3$                                    |
| Limestone                            | $50 - 4 \times 10^2$                                    |
| <b>Soils and Waters</b>              |                                                         |
| Clay                                 | $1 - 100$                                               |
| Alluvium                             | $10 - 800$                                              |
| Groundwater (fresh)                  | $10 - 100$                                              |
| Sea water                            | 0.2                                                     |

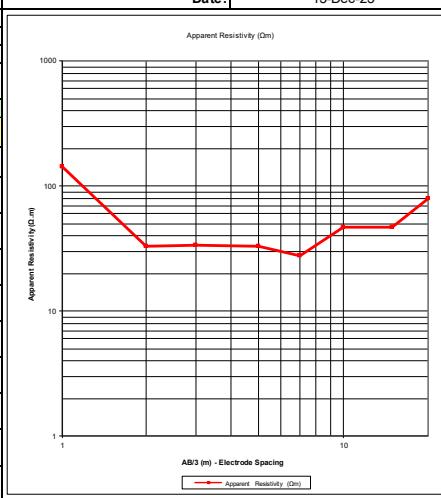
## 5 CONCLUSIONS

This report presents the results of a resistivity survey carried out at the proposed Paardevlei SPV and BESS site at Somerset West in the Western Cape.

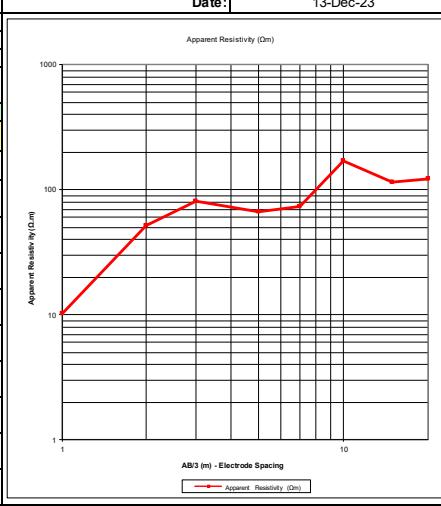
The results of the resistivity survey were run through an inversion model to interpret the subsoil layer depths and resistivities. The results were compared with the ASTM steel pipe corrosion potential classification to infer corrosion potential at each sounding location. Fifteen (15 No.) soundings to an inferred 20 m depth were carried out. The results of inversion modelling are variable across the site. This may be attributed to the variable quaternary sediments across the site. Further, due to the saline groundwater conditions expected beneath the site, there is little correlation between resistivity and surface topography, layer thickness, and depth to groundwater.


Typically, the results do indicate that the surface layer of variable thickness is of low resistivity which is underlain by a second layer of variable thickness of high resistivity. These in turn are underlain by a very highly resistive layer modelled to infinite depth. Soil resistivity results should be considered in isolation, and low resistivity results with corresponding high conductivity should have suitable earthing mechanisms and corrosion protection placed in the designs.

Corrosive potential of the soil media is also dependant on other parameters including pH, redox potential, temperature, oxygenation, moisture, sulphide, and chloride content. It is noted that elevated EC and other potential historical contaminants which may influence the results of the resistivity survey are expected in the groundwater beneath the site. As tests were carried out at point locations, variations to the reported resistivity and inferred corrosivity may occur across the site.


## ***Annexure A: Resistivity Sounding Results***

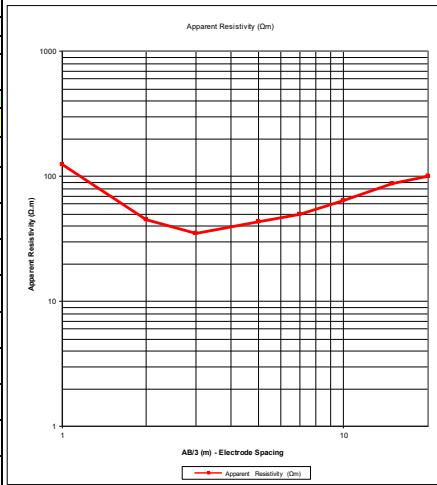

**Wenner Electrical Sounding Fieldsheet**


| Client :              |    | Integration Environment & Energy |           |                    |                        |         |        |                           |                                                                                             |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------------|---------|--------|---------------------------|---------------------------------------------------------------------------------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                        |         |        |                           |                                                                                             |            |              | Date: |   | 15-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 01     |                    | GPS Co-ordinates       |         |        |                           |                                                                                             |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 15-Dec-23 |                    | Time Start:            |         |        |                           | Time End:                                                                                   |            |              |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NE - SW   |                    | Site Description       |         |        |                           | Site consists of grass vegetation with shrubs and dry fine grained organic rich sandy soil. |            |              |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K | Field Recorded Results |         |        |                           |                                                                                             |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  |                    | Electrode Spacing      | ΔV (mV) | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                                          | No. Cycles | Base Reading | V     | I |           |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  | 6.28                   | 611.4   | 50.8   | 75.64                     | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  | 12.57                  | 0.0     | #N/A   | #N/A                      | 0                                                                                           | 3          |              |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  | 18.85                  | 67.4    | 118.6  | 10.69                     | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  | 31.42                  | 593.6   | 184.7  | 100.95                    | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  | 43.98                  | 206.8   | 102.9  | 85.83                     | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 | 62.83                  | 76.0    | 56.2   | 84.89                     | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 | 94.25                  | 125.6   | 126.1  | 94.12                     | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 | 125.66                 | 60.4    | 66.0   | 114.67                    | 0.1                                                                                         | 3          |              |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                        |         |        |                           |                                                                                             |            |              |       |   |           |  |  |  |  |

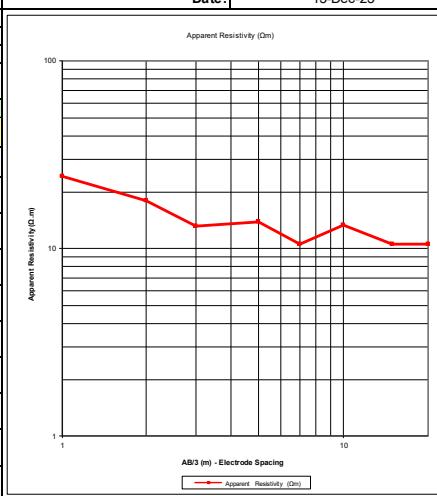


| Client :              |    | Integration Environment & Energy |           |                    |                        |         |        |                           |                                                                              |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------------|---------|--------|---------------------------|------------------------------------------------------------------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                        |         |        |                           |                                                                              |            |              | Date: |   | 13-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 03     |                    | GPS Co-ordinates       |         |        |                           |                                                                              |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                    | Time Start:            |         |        |                           | Time End:                                                                    |            |              |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Site Description       |         |        |                           | Site consists of shrub & grass vegetation with dry calcite sandy soil cover. |            |              |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K | Field Recorded Results |         |        |                           |                                                                              |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  |                    | Electrode Spacing      | ΔV (mV) | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                           | No. Cycles | Base Reading | V     | I |           |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  | 6.28                   | 428.8   | 18.9   | 142.08                    | 0.2                                                                          | 3          |              |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  | 12.57                  | 94.4    | 36.8   | 32.77                     | 0.2                                                                          | 4          |              |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  | 18.85                  | 61.8    | 33.9   | 33.80                     | 1.2                                                                          | 3          |              |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  | 31.42                  | 26.2    | 25.3   | 32.72                     | 0.2                                                                          | 3          |              |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  | 43.98                  | 15.2    | 24.5   | 27.67                     | 1.9                                                                          | 9          |              |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 | 62.83                  | 28.0    | 36.8   | 46.76                     | 0.5                                                                          | 3          |              |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 | 94.25                  | 6.8     | 13.6   | 46.79                     | 2.2                                                                          | 9          |              |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 | 125.66                 | 33.6    | 54.1   | 79.45                     | 1.5                                                                          | 4          |              |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                        |         |        |                           |                                                                              |            |              |       |   |           |  |  |  |  |

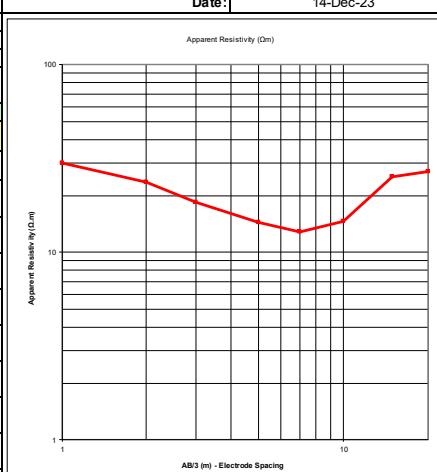



| Client :              |    | Integration Environment & Energy |           |                    |                        |         |        |                           |                                                                       |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------------|---------|--------|---------------------------|-----------------------------------------------------------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                        |         |        |                           |                                                                       |            |              | Date: |   | 13-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 05     |                    | GPS Co-ordinates       |         |        |                           |                                                                       |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                    | Time Start:            |         |        |                           | Time End:                                                             |            |              |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NE - SW   |                    | Site Description       |         |        |                           | Site consists of grass vegetation with dry fine to coarse sandy soil. |            |              |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K | Field Recorded Results |         |        |                           |                                                                       |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  |                    | Electrode Spacing      | ΔV (mV) | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                    | No. Cycles | Base Reading | V     | I |           |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  | 6.28                   | 28.8    | 15.4   | 10.32                     | 2.5                                                                   | 4          |              |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  | 12.57                  | 57.8    | 14.2   | 51.85                     | 0.6                                                                   | 4          |              |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  | 18.85                  | 55.6    | 12.9   | 81.13                     | 0.6                                                                   | 3          |              |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  | 31.42                  | 27.4    | 13.3   | 66.18                     | 2                                                                     | 9          |              |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  | 43.98                  | 21.2    | 13.0   | 73.09                     | 3                                                                     | 6          |              |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 | 62.83                  | 36.6    | 13.4   | 170.59                    | 0.9                                                                   | 3          |              |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 | 94.25                  | 16.4    | 13.4   | 114.71                    | 0.2                                                                   | 3          |              |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 | 125.66                 | 16.0    | 16.6   | 121.12                    | 1.4                                                                   | 3          |              |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                        |         |        |                           |                                                                       |            |              |       |   |           |  |  |  |  |





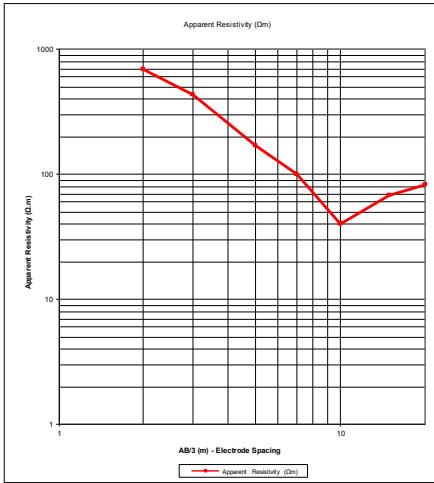

### Wenner Electrical Sounding Fieldsheet


| Client :              |    | Integration Environment & Energy |           |                    |                  |                        |        |                           |                                                                               |            |              | Ref:  |           | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|------------------------|--------|---------------------------|-------------------------------------------------------------------------------|------------|--------------|-------|-----------|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |                        |        |                           |                                                                               |            |              | Date: |           | 14-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 06     |                    | GPS Co-ordinates |                        |        |                           |                                                                               |            |              |       |           |           |  |  |  |  |
| Test Date:            |    |                                  | 14-Dec-23 |                    | South            |                        |        |                           | -34.06993                                                                     |            |              |       | East      |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Time Start:      |                        |        |                           | 10:00                                                                         |            |              |       | Time End: |           |  |  |  |  |
|                       |    |                                  |           |                    | Site Description |                        |        |                           | Site consists of grass vegetation with dry fine to medium grained sandy soil. |            |              |       |           |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | Field Recorded Results |        |                           |                                                                               |            |              |       |           |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing  |                  | ΔV (mV)                | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                            | No. Cycles | Base Reading |       | V         | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28                   | 220.2  | 11.0                      | 125.73                                                                        | 0.2        | 3            |       |           |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57                  | 122.2  | 34.0                      | 45.41                                                                         | 0.1        | 5            |       |           |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85                  | 46.2   | 25.0                      | 34.73                                                                         | 0          | 3            |       |           |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42                  | 40.4   | 29.8                      | 43.05                                                                         | 0.3        | 4            |       |           |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98                  | 26.6   | 23.3                      | 50.10                                                                         | 0          | 3            |       |           |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83                  | 52.6   | 51.9                      | 63.64                                                                         | 0.2        | 4            |       |           |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25                  | 93.4   | 100.2                     | 87.89                                                                         | 0.1        | 3            |       |           |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66                 | 46.6   | 57.6                      | 101.15                                                                        | 0.2        | 3            |       |           |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |                        |        |                           |                                                                               |            |              |       |           |           |  |  |  |  |

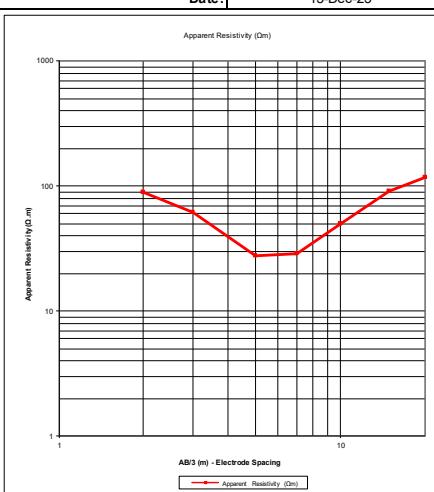


| Client :              |    | Integration Environment & Energy |           |                    |                  |         |        |                           |                                                                                                    |            |              | Ref:  |           | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|---------|--------|---------------------------|----------------------------------------------------------------------------------------------------|------------|--------------|-------|-----------|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |         |        |                           |                                                                                                    |            |              | Date: |           | 13-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 10     |                    | GPS Co-ordinates |         |        |                           |                                                                                                    |            |              |       |           |           |  |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                    | South            |         |        |                           | -34.07419                                                                                          |            |              |       | East      |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Time Start:      |         |        |                           | 12:15                                                                                              |            |              |       | Time End: |           |  |  |  |  |
|                       |    |                                  |           |                    | Site Description |         |        |                           | Site consists of eucalyptus tree vegetation with organic rich dry calcite fine grained sandy soil. |            |              |       |           |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | ΔV (mV) | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                                                 | No. Cycles | Base Reading |       | V         | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28    | 164.4  | 41.7                      | 24.35                                                                                              | 0.3        | 6            |       |           |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57   | 59.0   | 40.5                      | 18.04                                                                                              | 0.6        | 3            |       |           |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85   | 38.4   | 49.0                      | 13.19                                                                                              | 0.4        | 3            |       |           |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42   | 27.8   | 54.1                      | 13.86                                                                                              | 0.2        | 5            |       |           |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98   | 14.8   | 35.5                      | 10.51                                                                                              | 0.8        | 4            |       |           |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83   | 14.8   | 52.3                      | 13.31                                                                                              | 0.9        | 6            |       |           |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25   | 6.4    | 56.8                      | 10.62                                                                                              | 0.9        | 7            |       |           |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66  | 3.4    | 40.3                      | 10.60                                                                                              | 0.9        | 4            |       |           |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |         |        |                           |                                                                                                    |            |              |       |           |           |  |  |  |  |

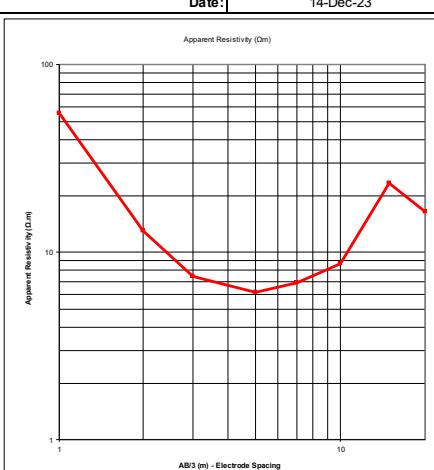



| Client :              |    | Integration Environment & Energy |           |                    |                  |         |        |                           |                                                                      |            |              | Ref:  |           | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|---------|--------|---------------------------|----------------------------------------------------------------------|------------|--------------|-------|-----------|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |         |        |                           |                                                                      |            |              | Date: |           | 14-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 12     |                    | GPS Co-ordinates |         |        |                           |                                                                      |            |              |       |           |           |  |  |  |  |
| Test Date:            |    |                                  | 14-Dec-23 |                    | South            |         |        |                           | -34.07664                                                            |            |              |       | East      |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Time Start:      |         |        |                           | 08:15                                                                |            |              |       | Time End: |           |  |  |  |  |
|                       |    |                                  |           |                    | Site Description |         |        |                           | Site consists of shrub vegetation with dry calcite sandy soil cover. |            |              |       |           |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | ΔV (mV) | I (mA) | Apparent Resistivity (Ωm) | Standard Deviation                                                   | No. Cycles | Base Reading |       | V         | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28    | 170.0  | 35.7                      | 29.89                                                                | 0          | 3            |       |           |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57   | 57.4   | 30.6                      | 23.57                                                                | 0.2        | 3            |       |           |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85   | 48.0   | 49.3                      | 18.53                                                                | 0.3        | 3            |       |           |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42   | 18.2   | 39.3                      | 14.42                                                                | 0.2        | 3            |       |           |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98   | 11.0   | 36.9                      | 12.92                                                                | 0.4        | 3            |       |           |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83   | 7.6    | 32.8                      | 14.70                                                                | 0.3        | 4            |       |           |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25   | 7.2    | 26.3                      | 25.29                                                                | 1.1        | 4            |       |           |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66  | 6.8    | 31.5                      | 27.01                                                                | 0.2        | 3            |       |           |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |         |        |                           |                                                                      |            |              |       |           |           |  |  |  |  |





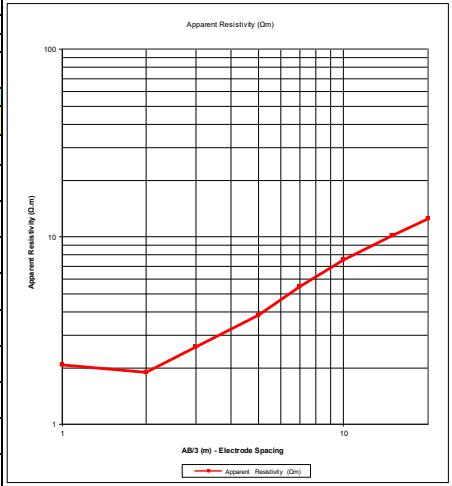

### Wenner Electrical Sounding Fieldsheet


| Client :              |    | Integration Environment & Energy |           |                    |                  |                        |           |                           |                    |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|------------------------|-----------|---------------------------|--------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |                        |           |                           |                    |            |              | Date: |   | 13-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 15     |                    | GPS Co-ordinates |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                    | South            |                        | -34.07967 |                           | East               |            | 18.787038    |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Time Start:      |                        | 10:00     |                           | Time End:          |            | 10:45        |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | Field Recorded Results |           |                           |                    |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing  |                  | ΔV (mV)                | I (mA)    | Apparent Resistivity (Ωm) | Standard Deviation | No. Cycles | Base Reading |       | V | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28                   | 0.0       | #N/A                      | #N/A               | 0.1        | 6            |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57                  | 852.0     | 15.5                      | 688.20             | 0.2        | 3            |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85                  | 334.6     | 14.6                      | 431.12             | 0          | 3            |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42                  | 69.2      | 12.8                      | 169.04             | 0.5        | 4            |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98                  | 35.8      | 15.6                      | 101.01             | 0.2        | 5            |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83                  | 8.6       | 13.8                      | 40.46              | 3.8        | 12           |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25                  | 15.6      | 22.1                      | 68.10              | 1.3        | 11           |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66                 | 7.6       | 10.6                      | 83.19              | 1.8        | 6            |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |

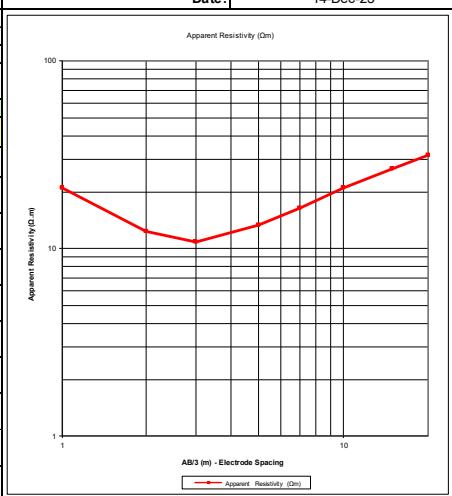


| Client :              |    | Integration Environment & Energy |           |                    |                  |                        |           |                           |                    |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|------------------------|-----------|---------------------------|--------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |                        |           |                           |                    |            |              | Date: |   | 13-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 17     |                    | GPS Co-ordinates |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                    | South            |                        | -34.08059 |                           | East               |            | 18.79256     |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                    | Time Start:      |                        | 11:05     |                           | Time End:          |            | 11:55        |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | Field Recorded Results |           |                           |                    |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing  |                  | ΔV (mV)                | I (mA)    | Apparent Resistivity (Ωm) | Standard Deviation | No. Cycles | Base Reading |       | V | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28                   | 0.0       | #N/A                      | #N/A               | 0          | 4            |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57                  | 449.0     | 63.0                      | 89.11              | 0.2        | 3            |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85                  | 95.6      | 28.8                      | 61.57              | 0.4        | 4            |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42                  | 17.2      | 20.3                      | 27.78              | 0.8        | 6            |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98                  | 14.4      | 21.3                      | 28.90              | 1.8        | 7            |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83                  | 14.4      | 17.3                      | 49.45              | 1.1        | 5            |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25                  | 15.4      | 16.1                      | 91.14              | 0.5        | 6            |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66                 | 15.6      | 16.3                      | 116.53             | 1.7        | 5            |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |

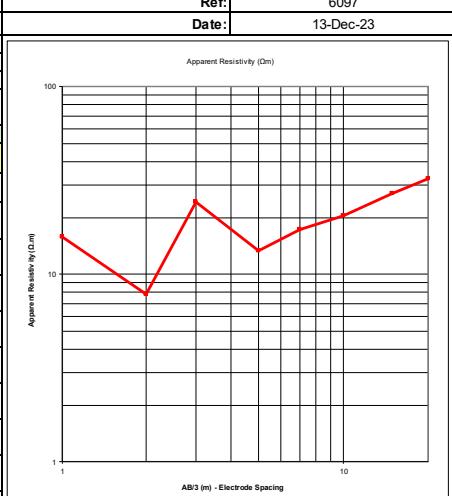



| Client :              |    | Integration Environment & Energy |           |                    |                  |                        |           |                           |                    |            |              | Ref:  |   | 6097      |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|--------------------|------------------|------------------------|-----------|---------------------------|--------------------|------------|--------------|-------|---|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                    |                  |                        |           |                           |                    |            |              | Date: |   | 14-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 19     |                    | GPS Co-ordinates |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |
| Test Date:            |    |                                  | 14-Dec-23 |                    | South            |                        | -34.07857 |                           | East               |            | 18.79566     |       |   |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NE - SW   |                    | Time Start:      |                        | 13:00     |                           | Time End:          |            | 13:45        |       |   |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Geometric Factor K |                  | Field Recorded Results |           |                           |                    |            |              |       |   |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing  |                  | ΔV (mV)                | I (mA)    | Apparent Resistivity (Ωm) | Standard Deviation | No. Cycles | Base Reading |       | V | I         |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                  |                  | 6.28                   | 419.4     | 47.5                      | 55.44              | 0.1        | 4            |       |   |           |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                  |                  | 12.57                  | 99.4      | 95.8                      | 13.04              | 0.1        | 3            |       |   |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                  |                  | 18.85                  | 27.6      | 63.6                      | 7.46               | 2          | 11           |       |   |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                  |                  | 31.42                  | 6.0       | 32.0                      | 6.12               | 0.8        | 4            |       |   |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                  |                  | 43.98                  | 5.0       | 32.8                      | 6.88               | 0.3        | 5            |       |   |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                 |                  | 62.83                  | 5.8       | 42.5                      | 8.74               | 0.3        | 5            |       |   |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                 |                  | 94.25                  | 7.0       | 28.0                      | 23.52              | 0.1        | 1            |       |   |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                 |                  | 125.66                 | 9.2       | 73.1                      | 16.48              | 1.1        | 7            |       |   |           |  |  |  |  |
|                       |    |                                  |           |                    |                  |                        |           |                           |                    |            |              |       |   |           |  |  |  |  |






### Wenner Electrical Sounding Fieldsheet

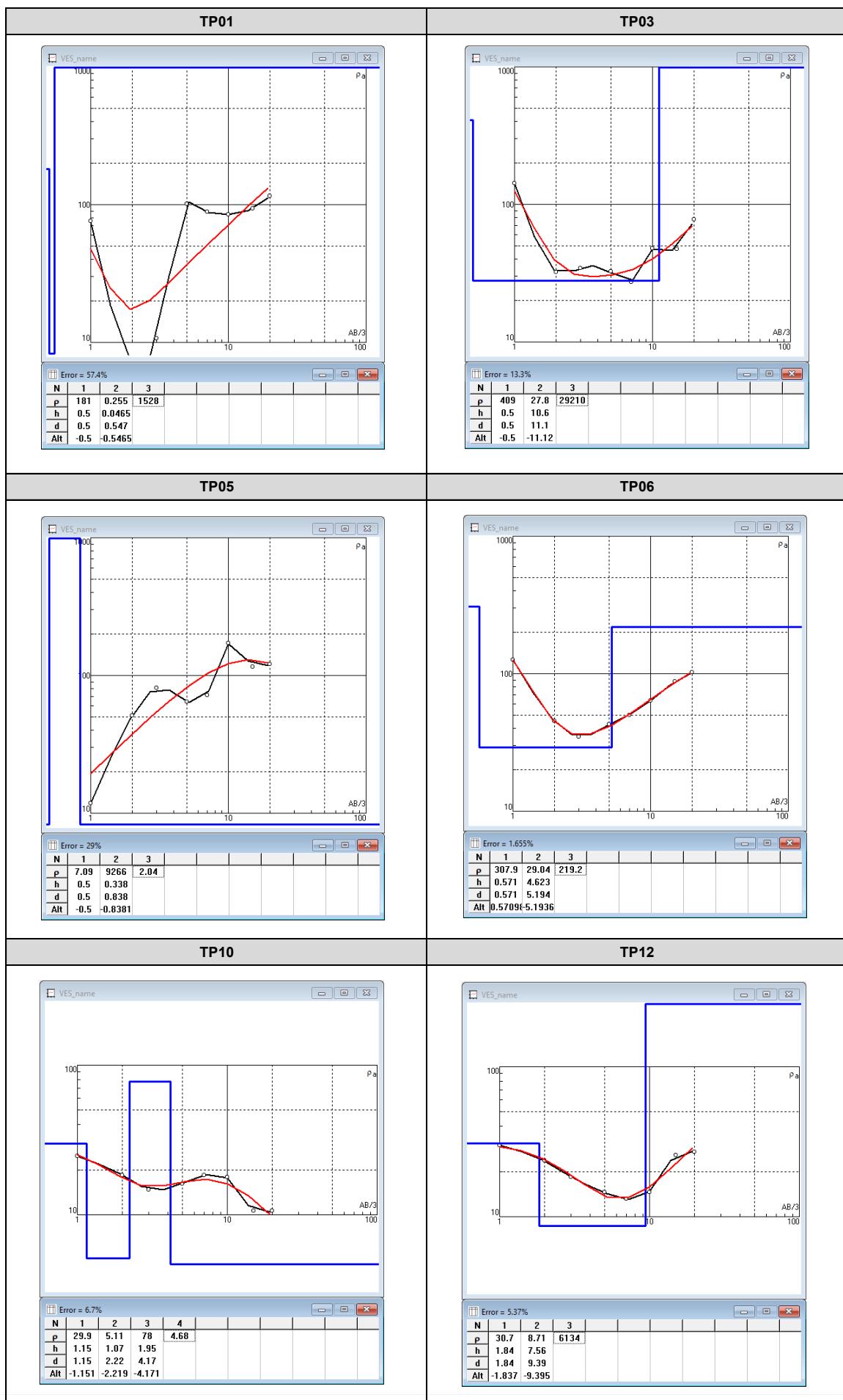

| Client :              |    | Integration Environment & Energy |           |                        |                  |                    |         |       |                                                                                                      |                           |                    | Ref:       |              |           |  |  |  |  |
|-----------------------|----|----------------------------------|-----------|------------------------|------------------|--------------------|---------|-------|------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------|--------------|-----------|--|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                        |                  |                    |         |       |                                                                                                      |                           |                    | Date:      |              | 14-Dec-23 |  |  |  |  |
| Test No.              |    |                                  | TP 20     |                        | GPS Co-ordinates |                    |         |       |                                                                                                      |                           |                    |            |              |           |  |  |  |  |
| Test Date:            |    |                                  | 14-Dec-23 |                        | South            |                    |         |       | -34.07569                                                                                            |                           |                    |            | East         |           |  |  |  |  |
| Traverse Orientation: |    |                                  | NE - SW   |                        | Time Start:      |                    |         |       | 13:50                                                                                                |                           |                    |            | Time End:    |           |  |  |  |  |
|                       |    |                                  |           |                        | Site Description |                    |         |       | Site consists of eucalyptus tree vegetation with dry fine to medium grained organic rich sandy soil. |                           |                    |            |              |           |  |  |  |  |
| Electrode Spacing     |    |                                  |           | Field Recorded Results |                  |                    |         |       |                                                                                                      |                           |                    |            |              |           |  |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing      |                  | Geometric Factor K | ΔV (mV) |       | I (mA)                                                                                               | Apparent Resistivity (Ωm) | Standard Deviation | No. Cycles | Base Reading |           |  |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                      |                  |                    | 6.28    | 146.6 | 449.1                                                                                                | 2.07                      | 0.9                | 3          | V            | I         |  |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                      |                  | 12.57              | 21.2    | 139.8 | 1.90                                                                                                 | 0.5                       | 3                  |            |              |           |  |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                      |                  | 18.85              | 28.8    | 208.1 | 2.60                                                                                                 | 0.1                       | 3                  |            |              |           |  |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                      |                  | 31.42              | 30.8    | 252.2 | 3.85                                                                                                 | 0.1                       | 5                  |            |              |           |  |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                      |                  | 43.98              | 21.4    | 173.4 | 5.44                                                                                                 | 0.2                       | 6                  |            |              |           |  |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                     |                  | 62.83              | 19.8    | 166.0 | 7.50                                                                                                 | 0.2                       | 3                  |            |              |           |  |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                     |                  | 94.25              | 14.2    | 131.0 | 10.12                                                                                                | 0.4                       | 4                  |            |              |           |  |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                     |                  | 125.66             | 16.0    | 159.2 | 12.51                                                                                                | 0.5                       | 3                  |            |              |           |  |  |  |  |
|                       |    |                                  |           |                        |                  |                    |         |       |                                                                                                      |                           |                    |            |              |           |  |  |  |  |

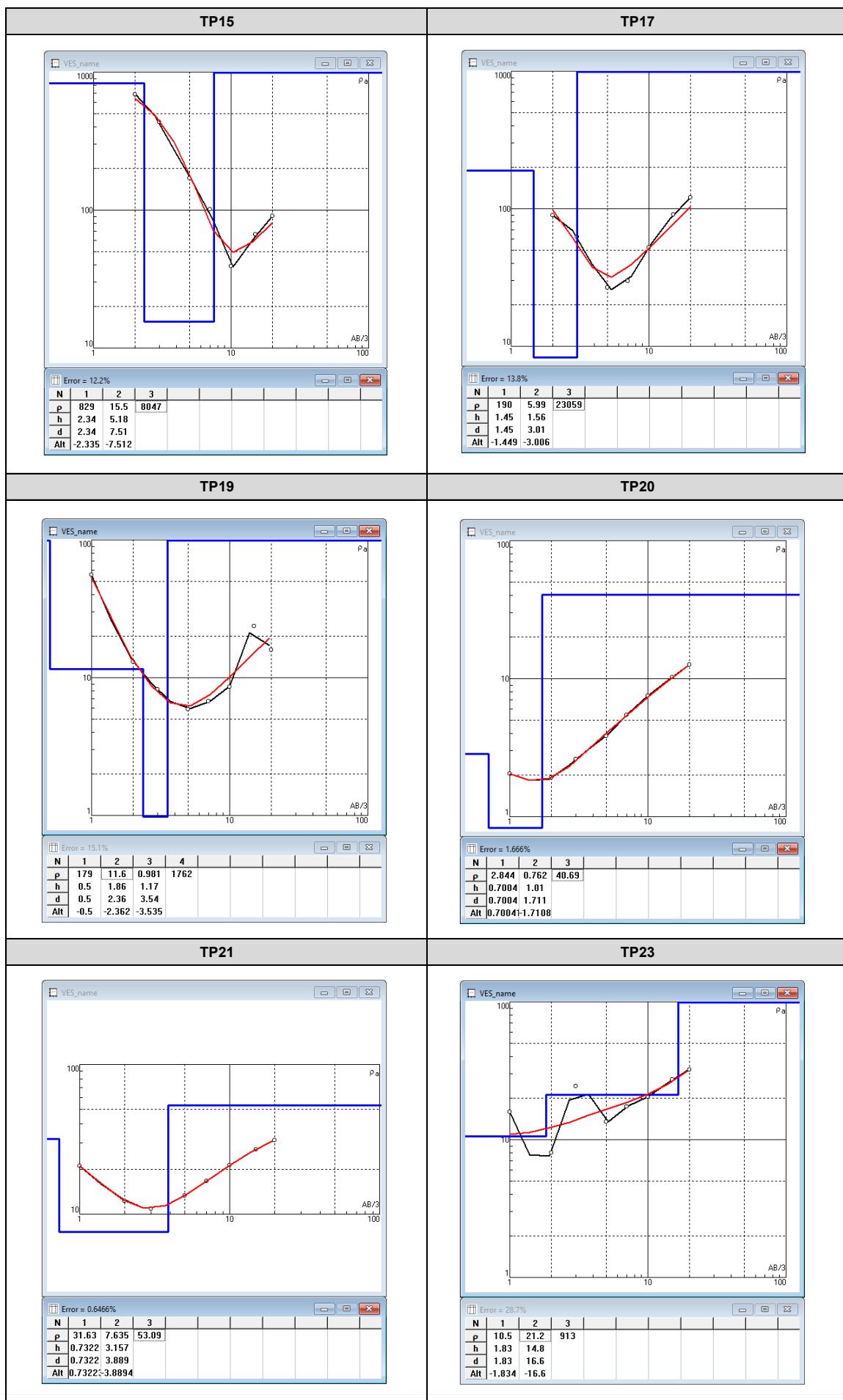


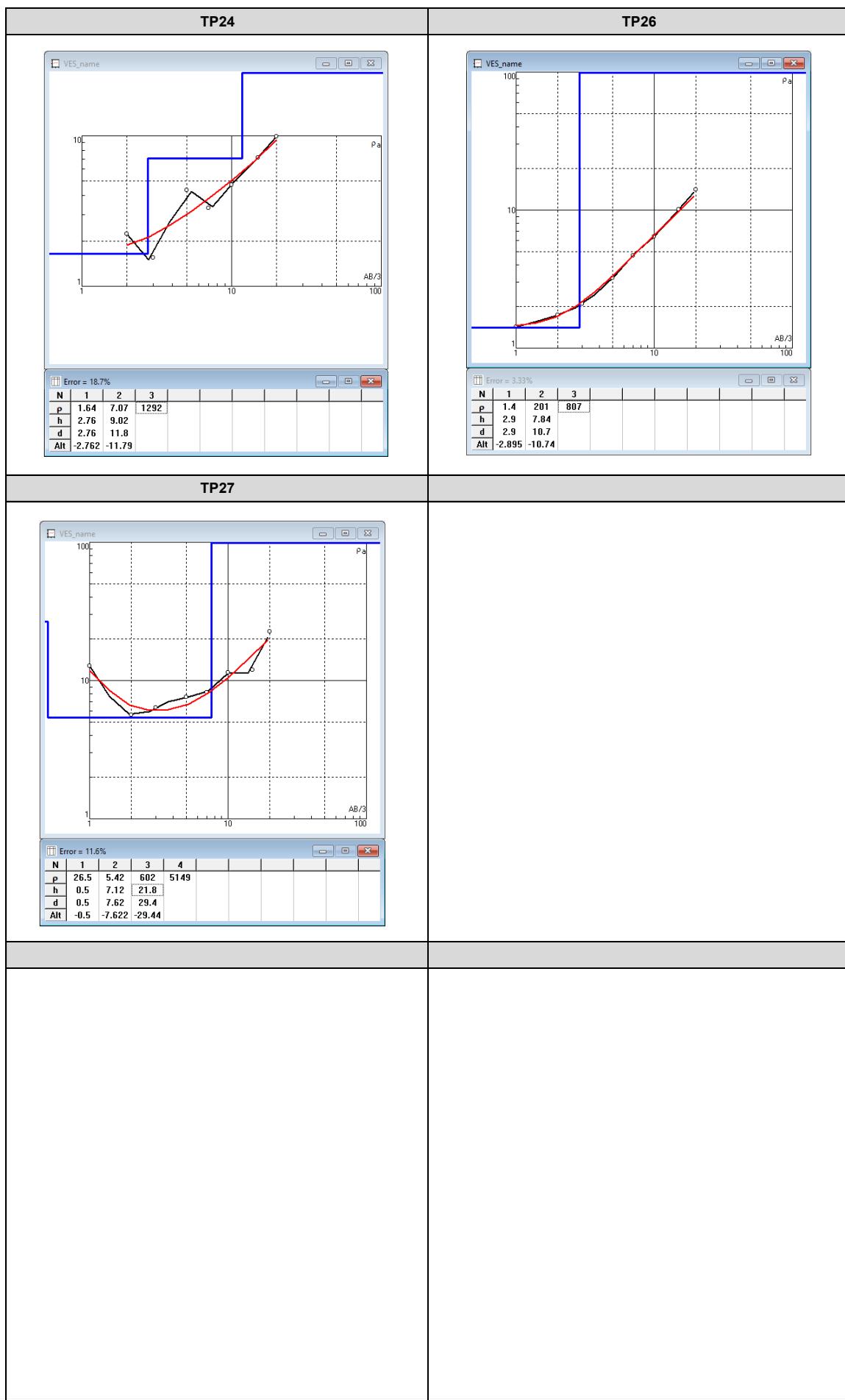
| Client :              |    | Integration Environment & Energy |           |                   |                  |                    |                        |        |                                                                               |                    |            | Ref:         |           | 6097      |   |  |  |  |
|-----------------------|----|----------------------------------|-----------|-------------------|------------------|--------------------|------------------------|--------|-------------------------------------------------------------------------------|--------------------|------------|--------------|-----------|-----------|---|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                   |                  |                    |                        |        |                                                                               |                    |            | Date:        |           | 14-Dec-23 |   |  |  |  |
| Test No.              |    |                                  | TP 21     |                   | GPS Co-ordinates |                    |                        |        |                                                                               |                    |            |              |           |           |   |  |  |  |
| Test Date:            |    |                                  | 14-Dec-23 |                   | South            |                    |                        |        | -34.07302                                                                     |                    |            |              | East      |           |   |  |  |  |
| Traverse Orientation: |    |                                  | NW - SE   |                   | Time Start:      |                    |                        |        | 11:30                                                                         |                    |            |              | Time End: |           |   |  |  |  |
|                       |    |                                  |           |                   | Site Description |                    |                        |        | Site consists of grass vegetation with dry fine to medium grained sandy soil. |                    |            |              |           |           |   |  |  |  |
| Electrode Spacing     |    |                                  |           | Electrode Spacing |                  | Geometric Factor K | Field Recorded Results |        |                                                                               |                    |            |              |           |           |   |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing |                  |                    | ΔV (mV)                | I (mA) | Apparent Resistivity (Ωm)                                                     | Standard Deviation | No. Cycles | Base Reading |           | V         | I |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                 |                  | 6.28               | 480.8                  | 143.5  | 21.04                                                                         | 0.1                | 4          |              |           |           |   |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                 |                  | 12.57              | 172.8                  | 176.4  | 12.28                                                                         | 0.1                | 3          |              |           |           |   |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                 |                  | 18.85              | 73.2                   | 127.6  | 10.86                                                                         | 0.2                | 3          |              |           |           |   |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                 |                  | 31.42              | 26.2                   | 61.9   | 13.41                                                                         | 0.4                | 3          |              |           |           |   |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                 |                  | 43.98              | 17.0                   | 45.0   | 16.49                                                                         | 0.3                | 3          |              |           |           |   |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                |                  | 62.83              | 13.0                   | 38.4   | 20.93                                                                         | 0.3                | 3          |              |           |           |   |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                |                  | 94.25              | 15.6                   | 54.6   | 26.73                                                                         | 0.3                | 3          |              |           |           |   |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                |                  | 125.66             | 10.4                   | 41.8   | 31.65                                                                         | 0.9                | 3          |              |           |           |   |  |  |  |
|                       |    |                                  |           |                   |                  |                    |                        |        |                                                                               |                    |            |              |           |           |   |  |  |  |



| Client :              |    | Integration Environment & Energy |           |                   |                  |                    |                        |        |                                                                          |                    |            | Ref:         |           | 6097      |   |  |  |  |
|-----------------------|----|----------------------------------|-----------|-------------------|------------------|--------------------|------------------------|--------|--------------------------------------------------------------------------|--------------------|------------|--------------|-----------|-----------|---|--|--|--|
| Project :             |    | Paardevlei Resistivity Survey    |           |                   |                  |                    |                        |        |                                                                          |                    |            | Date:        |           | 13-Dec-23 |   |  |  |  |
| Test No.              |    |                                  | TP 23     |                   | GPS Co-ordinates |                    |                        |        |                                                                          |                    |            |              |           |           |   |  |  |  |
| Test Date:            |    |                                  | 13-Dec-23 |                   | South            |                    |                        |        | -34.07255                                                                |                    |            |              | East      |           |   |  |  |  |
| Traverse Orientation: |    |                                  | N - S     |                   | Time Start:      |                    |                        |        | 13:10                                                                    |                    |            |              | Time End: |           |   |  |  |  |
|                       |    |                                  |           |                   | Site Description |                    |                        |        | Site consists of shrub vegetation with poorly fine to medium sandy soil. |                    |            |              |           |           |   |  |  |  |
| Electrode Spacing     |    |                                  |           | Electrode Spacing |                  | Geometric Factor K | Field Recorded Results |        |                                                                          |                    |            |              |           |           |   |  |  |  |
| AB                    | MN | OA<br>OB                         | ON<br>OM  | Electrode Spacing |                  |                    | ΔV (mV)                | I (mA) | Apparent Resistivity (Ωm)                                                | Standard Deviation | No. Cycles | Base Reading |           | V         | I |  |  |  |
| 3                     | 1  | 1.5                              | 0.5       | 1                 |                  | 6.28               | 39.0                   | 15.4   | 15.86                                                                    | 1.7                | 6          |              |           |           |   |  |  |  |
| 6                     | 2  | 3                                | 1         | 2                 |                  | 12.57              | 10.2                   | 15.9   | 7.83                                                                     | 2                  | 6          |              |           |           |   |  |  |  |
| 9                     | 3  | 4.5                              | 1.5       | 3                 |                  | 18.85              | 27.0                   | 20.8   | 24.36                                                                    | 2                  | 9          |              |           |           |   |  |  |  |
| 15                    | 5  | 7.5                              | 2.5       | 5                 |                  | 31.42              | 14.8                   | 34.4   | 13.31                                                                    | 0.3                | 3          |              |           |           |   |  |  |  |
| 21                    | 7  | 10.5                             | 3.5       | 7                 |                  | 43.98              | 80.2                   | 203.8  | 17.33                                                                    | 0.1                | 4          |              |           |           |   |  |  |  |
| 30                    | 10 | 15                               | 5         | 10                |                  | 62.83              | 10.8                   | 33.1   | 20.61                                                                    | 0.4                | 3          |              |           |           |   |  |  |  |
| 45                    | 15 | 22.5                             | 7.5       | 15                |                  | 94.25              | 25.4                   | 88.1   | 27.10                                                                    | 0.4                | 3          |              |           |           |   |  |  |  |
| 60                    | 20 | 30                               | 10        | 20                |                  | 125.66             | 3.6                    | 14.0   | 32.35                                                                    | 0.1                | 3          |              |           |           |   |  |  |  |
|                       |    |                                  |           |                   |                  |                    |                        |        |                                                                          |                    |            |              |           |           |   |  |  |  |





### Wenner Electrical Sounding Fieldsheet

| Client :              |  | Integration Environment & Energy |           |                  |                  |                                                                               |           |       |           |                   |         | Ref:               |  |                        |  |  |  |  |
|-----------------------|--|----------------------------------|-----------|------------------|------------------|-------------------------------------------------------------------------------|-----------|-------|-----------|-------------------|---------|--------------------|--|------------------------|--|--|--|--|
| Project :             |  | Paardevlei Resistivity Survey    |           |                  |                  |                                                                               |           |       |           |                   |         | Date:              |  | 14-Dec-23              |  |  |  |  |
| Test No.              |  |                                  | TP 24     |                  | GPS Co-ordinates |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
| Test Date:            |  |                                  | 14-Dec-23 |                  | South            |                                                                               | -34.07669 |       | East      |                   | 18.8013 |                    |  |                        |  |  |  |  |
| Traverse Orientation: |  |                                  | NE - SW   |                  | Time Start:      |                                                                               | 14:35     |       | Time End: |                   | 15:35   |                    |  |                        |  |  |  |  |
| Electrode Spacing     |  |                                  |           | Site Description |                  | Site consists of short succulent vegetation with dry fine grained sandy soil. |           |       |           |                   |         |                    |  |                        |  |  |  |  |
| AB                    |  |                                  |           | MN               |                  | OA OB                                                                         |           | ON OM |           | Electrode Spacing |         | Geometric Factor K |  | Field Recorded Results |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |
|                       |  |                                  |           |                  |                  |                                                                               |           |       |           |                   |         |                    |  |                        |  |  |  |  |

***Annexure B: Inversion Models***





